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INTRODUCTION

Implicit finite-difference method, adaptive to strongly lateral variation and guarantee stability,

has been one of the most attractive methods for isotropic media. Traditional finite-difference

migration methods are based on the truncation of Taylor series of the dispersion relation. For

anisotropic media, PSPI or explicit finite-difference methods are usually used for migratin

because the dispersion relation is very complex and it is difficult to derive the Talyor series

for finite-difference. Lee and Suh (1985) approximate the square-root equation with rational

functions, and optimize the coefficient with least-squares. This method improves the accuracy

with the same computational cost. Under the weak anisotropy assumption, Ristow and Ruhl

(1997) design an implicit scheme for VTI media. Liu et al. (2005) apply a phase-correction

operator (Li, 1991) after the finite-difference operator for VTI media and improve the accuracy.

Shan (2006b) approximates the VTI dispersion relation with rational functions and obtains

the coefficients using weighted least-squares optimization. Similarly, Shan (2006a) design

implicit-finite difference for TTI media by fitting the dispersion relation with rational function

and show impulse response in homogeneous media.

SEP–129



Optimized finite-difference 2 Shan

In this paper, I review an optimized finite-difference for TTI media and apply it to synthetic

datasets to verify the algorithm.

OPTIMIZED FINITE-DIFFERENCE FOR TILTED TI MEDIA

The dispersion relation of tilted TI media can be characterized by a quartic equation as follows:

d4S4
z +d3S3

z +d2S2
z +d1Sz +d0 = 0, (1)

where the coefficients d0,d1,d2,d3, and d4 are as follows:

d0 = (2+2ε cos2 ϕ − f )S2
x −1−

[

(1− f )(1+2ε cos2 ϕ)+ f
2 (ε− δ) sin2 2ϕ

]

S4
x ,

d1 = [2ε(1− f ) sin2ϕ − f (ε− δ) sin4ϕ]S3
x −2ε sin2ϕSx ,

d2 = [ f (ε− δ) sin2 2ϕ −2(1− f )(1+ε)−2 f (ε− δ)cos2 2ϕ]S2
x + (2+2ε sin2 ϕ − f ),

d3 = [ f (ε− δ) sin4ϕ +2ε(1− f ) sin2ϕ]Sx ,

d4 = f −1+2ε( f −1)sin2 ϕ −
f
2 (ε− δ) sin2 2ϕ.

Therotically, equation 1 can be solved analylitically, but there is no explicit expression for

its solution. Therefore, it is difficult to obtain the Taylor series. Figure ?? show how the

dispersion relation looks, when the anisotropy parameters ε = 0.4, δ = 0.2 and the tilting

angle θ = 30◦.

Generally, the Padé approximation suggests that if the function Sz(Sr ) ∈ Cn+m , then Sz(Sr )

can be approximated by a rational function Rn,m (Sr):

Rn,m (Sr ) =
Pn(Sr )
Qm(Sr)

, (2)

where

Pn(Sr ) =

n
∑

i=0
ai S i

r
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and

Qm(x) =

m
∑

i=0
bi S i

r

are polynomials of degree n and m, respectively. The coefficients ai and bi can be obtained

either analytically by Taylor-series analysis or numerically by least-squares fitting.

Sz is an even function of Sx for isotropic and VTI media. In contrast, Sz is not an symmetric

function Sx for a tilted TI medium. It’s well known that an general function can be decomposed

into an even function and an odd function. We can approximate the even part with the even

rational functions, such as S2
x , S4

x and approximate the odd part with odd rational functions,

such as Sx , S3
x To make the finite-difference scheme keep ??? stability, I approximate the

dispersion relation of TTI media with rational functions in the shape as follows:

Sz(Sx) ≈ Sz0 +
a1S2

x + c1Sx

1+b1S2
x

+
a2S2

x + c2Sx

1+b2 S2
x

, (3)

where Sz0 = Sz(0) and the coefficients c1,b1,a1,c2,b2,a2 can be estimated by least-squares

methods. They are functions of the anisotropy parameters ε, δ and the tilting angle φ. When

these parameters vary laterally, the coefficients c1,b1,a1,c2,b2,a2 also vary laterally. It is too

expensive to run least-squares estimation for each grid point during the wavefield extrapola-

tion. They can be calculated and stored in a table before the wavefield extrapolation. During

the wavefield extrapolation, given the anisotropy parameters ε, δ, and the tilting angle φ, we

search for these coefficients from the table and put them into the finite-difference algorithm.

Given the coefficients found from the table, the finite difference algorithm in TTI media is

similar to the isotropic media.
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2D SYNTHETIC DATA EXAMPLE

Figure ??, ??, ?? show the velocity (the velocity in a direction paralleling to the symme-

try axis) mode l, the anisotropy parameter ε and the tilting angle of the media. There is an

anisotropic layer, which includes VTI part and TTI parts with the tilting angle of 30◦, 45◦ and

60◦. Figure ?? shows the image obtained by an isotropic migration. Figure ?? shows the im-

age obtained by anisotropic optimized fini te-difference migration. In Figure ??, the dipping

reflectors ar e not at right position and the flat reflector bellow the anisotropic layer does not

focus. These features are fixed in Figure ?? by anisotropic migration.

CONCLUSION
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Figure 1: Velocity model model [ER]
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Figure 2: Isotropic migration image [ER]
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