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Aligned vertical fractures, HTI reservoir symmetry,
and Thomsen seismic anisotropy parameters

James G. Berryman

ABSTRACT
The Sayers and Kachanov (1991) crack-influence parameters are shown to be directly
related to Thomsen (1986) weak-anisotropy seismic parameters for fractured reservoirs
when the crack/fracture density is small enough. These results are then applied to the
problem of seismic wave propagation in reservoirs having HTI symmetry due to the pres-
ence of aligned vertical fractures. The approach suggests a method of inverting for fracture
density from wave speed data.

INTRODUCTION

Aligned vertical fractures provide one commonly recognized source of azimuthal (surface an-
gle dependent) seismic anisotropy in oil and gas reservoirs (Lynn et al., 1995). While layering
in the earth also results in seismic anisotropy (Backus, 1962), horizontal layering of isotropic
rock produces vertical transversely isotropic (VTI) media, and could not produce horizontal
transversely isotropic (HTI) symmetry without some very significant uplift phenomena be-
ing present simultaneously. Of course, anisotropic layers such as shale beds bring seismic
anisotropy with them, but again this anisotropy will more typically be VTI, rather than HTI.

On the other hand, VTI earth media seem much easier to understand and analyze than HTI
media. Nevertheless, when the source of the anisotropy is aligned vertical fractures, we can
make very good use of the simpler case of horizontal fracture analysis by making a rather
minor change of our point of view that easily gives all the needed results.

Together with the simplifications already noted, we can also understand very directly the
sources of the anisotropy due to fractures by considering a method introduced by Sayers and
Kachanov (1991). We find that elastic constants, and therefore the Thomsen (1986) param-
eters, can be very conveniently expressed in terms of the Sayers and Kachanov (1991) for-
malism. Furthermore, in the low crack density limit [which is also consistent with the weak
anisotropy approach of Thomsen (1986)], we obtain direct links between the Thomsen param-
eters and the fracture properties. These links suggest a method of inverting for fracture density
from wave speed data.
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THOMSEN’S SEISMIC WEAK ANISOTROPY METHOD

Thomsen’s weak anisotropy method (Thomsen, 1986), being an approximation designed specif-
ically for use in velocity analysis for exploration geophysics, is clearly not exact. Approxima-
tions incorporated into the formulas become most apparent for greater angles θ from the ver-
tical, especially for compressional and vertically polarized shear velocities vp(θ ) and vsv(θ ),
respectively. Angle θ is measured from the ẑ-vector pointing into the earth.

For reference purposes, we include here the exact velocity formulas for P, SV, and SH
seismic waves at all angles in a VTI elastic medium. These results are available in many
places (Rüger, 2002; Musgrave, 2003), but were taken specifically from Berryman (1979)
with some minor changes of notation. The results are:

v2
p(θ ) =

1
2ρ

{[

(c11 + c44) sin2 θ + (c33 + c44)cos2 θ
]

+ R(θ )
}

(1)

and

v2
sv(θ ) =

1
2ρ

{[

(c11 + c44) sin2 θ + (c33 + c44)cos2 θ
]

− R(θ )
}

, (2)

where

R(θ ) =
√

[

(c11 − c44) sin2 θ − (c33 − c44)cos2 θ
]2 +4(c13 + c44)2 sin2 θ cos2 θ (3)

and, finally,

v2
sh(θ ) =

1
ρ

[

c44 + (c66 − c44) sin2 θ
]

. (4)

Expressions for phase velocities in Thomsen’s weak anisotropy limit can be found in many
places, including Thomsen (1986, 2002) and Rüger (2002). The pertinent expressions for
phase velocities in VTI media as a function of angle θ , measured as before from the vertical
direction, are

vp(θ ) ' vp(0)
(

1+ δ sin2 θ cos2 θ + ε sin4 θ
)

, (5)

vsv(θ ) ' vs(0)
(

1+ [v2
p(0)/v2

s (0)](ε − δ) sin2 θ cos2 θ
)

, (6)

and

vsh(θ ) ' vs(0)
(

1+γ sin2 θ
)

. (7)

In our present context, vs(0) =
√

c44/ρ0, and vp(0) =
√

c33/ρ0, where c33, c44, and ρ0 are two
stiffnesses of the cracked medium and the mass density of the isotropic host elastic medium.
We assume that the cracks have insufficient volume to affect the mass density ρ0 significantly.

In each case, Thomsen’s approximation has included a step that removes the square on the
left-hand side of the equation, by expanding a square root of the right hand side. This step
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introduces a factor of 1
2 multiplying the sin2 θ terms on the right hand side, and — for example

— immediately explains how equation (7) is obtained from (4). The other two equations for
vp(θ ) and vsv(θ ), i.e., (5) & (6), involve additional approximations as well that we will not
attempt to explain here.

The three resulting Thomsen (1986) seismic parameters for weak anisotropy with VTI
symmetry are γ = (c66 − c44)/2c44, ε = (c11 − c33)/2c33, and

δ =
(c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
=

(

c13 + c33

2c33

)(

c13 +2c44 − c33

c33 − c44

)

. (8)

All three of these parameters can play important roles in the velocities given by (5)-(7) when
the crack densities are high enough. If crack densities are very low, then the SV shear wave
will actually have no dependence on angle of wave propagation. Note that the so-called anel-
lipticity parameter A = ε − δ, vanishes when ε ≡ δ, which we will soon see does happen for
low crack densities.

FRACTURED RESERVOIRS AND CRACK-INFLUENCE PARAMETERS

To illustrate the Sayers and Kachanov (1991) crack-influence parameter method, consider the
situation in which all the cracks in the system have the same vertical (or z-)axis of symmetry.
(We use 1,2,3 and x,y,z notation interchangeably for the axes.) Then, the cracked/fractured
system is not isotropic, and we have the first-order compliance correction matrix for horizontal
fractures, which is:

1S(1)
i j = ρc

















0 0 η1
0 0 η1
η1 η1 2(η1 +η2)

2η2
2η2

0

















, (9)

where i , j = 1,2,3. The two lowest order crack-influence parameters from the Sayers and
Kachanov (1991) approach are η1 and η2. The scalar crack density parameter is defined, for
penny-shaped cracks having number density n = N/V and radius in the plane of the crack
equal to a, to be ρc = na3. The aspect ratio of the cracks is b/a.

Now it is also not difficult to see that, if the cracks were oriented instead so that all their
normals were pointed horizontally along the x-axis, then we would have one permutation of
this matrix and, if instead they were all pointed horizontally along the y-axis, then we would
have a third permutation of the matrix. To obtain an isotropic compliance correction matrix, we
can simply average these three permutations: just add the three 1S’s together and then divide
by three. [Note that this method of averaging, although correct for contributions linear in ρc,
does not necessarily work for higher order corrections (Berryman, 2007).] This construction
shows in part both the power and the simplicity of the Sayers and Kachanov (1991) approach.
The connection to the isotropic case is of great practical importance, because it permits us to
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estimate the parameters η1 and η2 by studying isotropic cracked/fractured systems, using well-
understood effective medium theories (Zimmerman, 1991; Berryman and Grechka, 2006).

HORIZONTAL FRACTURES AND VTI SYMMETRY

Next consider horizontal fractures, as illustrated by the correction matrix (9). The axis of
fracture symmetry is uniformly vertical, and so such a reservoir would exhibit VTI symmetry.
The resulting expressions for the Thomsen parameters in terms of the Sayers and Kachanov
(1991) parameters η1 and η2 are given by

γh =
c66 − c44

2c44
= ρcη2G0, (10)

and

εh =
c11 − c33

2c33
= ρc[(1+ν0)η1 +η2]

E0

(1−ν2
0 )

'
2ρcη2G0

1−ν0
. (11)

The background shear modulus is G0, and the corresponding Poisson ratio is ν0. Young’s
modulus is E0 = 2(1+ ν0)G0. We also find that δ = ε to the lowest order in the crack density
parameter. We have chosen to neglect the term in η1 in the final expression of (11), as this is on
the order of a 1% correction to the term retained. Values of η1 and η2 can be determined from
simulations and/or effective medium theories (Zimmerman, 1991; Berryman and Grechka,
2006). They depend on the elastic constants of the background medium, and on the shape of
the cracks (assumed to be penny-shaped in these examples).

HTI RESERVOIR SYMMETRY FROM ALIGNED VERTICAL FRACTURES

Now the trick to get from horizontal fractures and VTI to aligned vertical fractures and HTI
symmetry is relatively simple. We will not need to make any effort to relabel the ci j ’s. Rather
we just change the meaning of the labels. As long as we stay mentally oriented in the reference
frame of the fractures themselves, we can continue to view the z-direction as the symmetry
axis and the xy-plane, as the plane of the fractures. The only change we need to make arises
from the fact that the surface, where we shoot our seismic survey, is now at 90o from the
fracture plane, whereas for horizontal fractures the surface was at 0o from the fracture plane.
This observation implies that, wherever the angle θ (measured in radians) appeared in our
previous formulas, now we must replace it by π

2 − θ radians. Thus, sin2 θ → cos2 θ and vice
versa in the formulas. This algorithm is exactly right only for those planes that are vertical
and also perpendicular to the fracture plane, i.e., at azimuthal angles φ = ±π

2 . For all angles,
we actually need to replace sin2 θ by cos2 θ sin2 φ. Then, when φ = 0 or π , there is no angular
dependence since we are in the plane of the fracture.

For the θ dependence, taking sin2 θ → 1 − sin2 θ , is actually a handier way to proceed,
because then we can reduce all the formulas to the same equivalent form as the one Thom-
sen had originally chosen — if we choose to do so. It is also helpful to backup one step in



SEP–129 HTI reservoir symmetry 143

0 10 20 30 40 50 60 70 80 901.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

θ (degrees)

v p (k
m

/s
)

 

 

ν0 = 0.00

ρc = 0.05

ρc = 0.10

ρc = 0.20

Figure 1: For aligned vertical cracks: examples of anisotropic compressional wave speed (vp)
for Poisson’s ratio of the host medium ν0 = 0.00. Velocity curves in black are exact for the
fracture model discussed in the text. The Thomsen weak anisotropy velocity curves for the
same fracture model were then overlain in blue. jim1-FIG1 [NR]

the Thomsen derivation and restore squares, thereby “unexpanding” the square root. Certain
approximations are then undone, and the final formulas we obtain will be more accurate.

If ε, δ, and γ are the Thomsen parameters for the VTI symmetry (horizontal fracture),
then, for example,

v2
sh(

π

2
− θ ) = v2

s (0)
[

1+2γ sin2(
π

2
− θ )

]

= v2
s (0)(1+2γ )

[

1−
2γ

1+2γ
sin2 θ

]

. (12)

From this result, we deduce that γ → −γ /(1+2γ ). This is a rigorous statement for the form
of the equation considered. Then, the weak anisotropy limit will be γ → −γ , but this final
step is not necessary or recommended for some of the higher crack densities considered here.

Similar calculations for v2
p and v2

sv give

v2
p(

π

2
− θ ) = v2

p(0)
[

1+2δ sin2 θ cos2 θ +2ε sin2(
π

2
− θ )

]

(13)

and

v2
sv(

π

2
− θ ) = v2

s (0)
[

1+2[v2
p(0)/v2

s (0)](ε − δ) sin2 θ cos2 θ
]

, (14)

which lead to the results ε → −ε
1+2ε

' −ε, and δ → δ−2ε
1+2ε

' δ − 2ε. As a consistency check,
note that ε−δ → (ε−δ)/(1+2ε) ' (ε−δ). Similarly, the pertinent wave speeds are: vp(0) →
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Figure 2: Same as Figure 1 for SH shear wave speed (vsh). jim1-FIG2 [NR]

√
c33(1+2ε)/ρ =

√
c11/ρ and vs(0) →

√
c44(1+2γ )/ρ =

√
c66/ρ in (12), but the remaining

velocity [vsv(0)] does not change since vsv(θ ) (within Thomsen’s weak anisotropy approxi-
mation) is completely symmetric in θ and therefore has to remain so, also with the same end
points, after the switch from θ to π

2 − θ . These results were all known previously and can be
found in Rüger (2002), p. 75.

Examples of these results for small (ρc = 0.05) and higher (ρc = 0.1,0.2) crack densities
[see Berryman and Grechka (2006) for details of the methods used to obtain all the Sayers and
Kachanov crack-influence parameters from simulation data and Berryman (2007) for a full
discussion of the reservoir application] are presented in Figures 1-6.

CONCLUSIONS

We find that the Sayers and Kachanov (1991) crack-influence parameters are ideally suited to
analyzing the role of fracture mechanics in producing anisotropic elastic constants for aligned
fractures in a reservoir exhibiting HTI symmetry. Discussion of the results obtained for the
higher crack density examples presented in Figures 1-6 will be provided in a later publication.
But the main ideas are already contained in Berryman and Grechka (2006) and Berryman
(2007). One important conclusion from the modeling presented here is that the Thomsen weak
anisotropy method is valid for crack densities up to about ρc ' 0.05, but should be replaced
by better approximations, or exact calculations, if the crack density is ρc ' 0.1 or higher.
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Figure 3: Same as Figure 1 for SV shear wave speed (vsv). jim1-FIG3 [NR]
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Figure 4: Same as Figure 1, but the value of ν0 = 0.4375. jim1-FIG4 [NR]
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Figure 5: Same as Figure 2, but the value of ν0 = 0.4375. jim1-FIG5 [NR]
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Figure 6: Same as Figure 3 for a different background medium having Poisson’s ratio ν0 =
0.4375. jim1-FIG6 [NR]
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