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Short Note

Transmission wavefield velocity analysis

Jeff Shragge

INTRODUCTION

Transmission wavefields contain important information on subsurface velocity profiles. This
is evident from the many tomography-based techniques that invert for perturbations on an
assumed background velocity using the transmission wavefield response. One of the more
successful approaches is waveform tomography (Pratt and Worthington, 1989; Woodward,
1992), an approach to non-linear velocity inversion problem that iteratively obtains an esti-
mate of velocity perturbations by minimizing the difference between forward-modeled wave-
forms and acquired data through residual back-projection. A commonly used and accurate
way to forward model synthetic data is using two-way finite-differences. Inversion of the
correspondingly large matrices required for 2-D waveform inversion is typically done using
a memory-intensive LU decomposition approach (Štekl and Pratt, 1998). Current computer
memory limitations preclude the use of this approach on typical 3-D seismic volumes (Operto
et al., 2006).

Wave-equation migration velocity analysis (WEMVA) is another velocity inversion tech-
nique (Sava and Biondi, 2004). This procedure back-projects wavefield perturbations derived
from variations in migrated image volume (i.e. angle-gathers) to image velocity perturba-
tions. Unlike typical waveform inversion approaches, this procedure is often implemented
with one-way phase-only wavefield extrapolation for forward modeling, and is applied to the
back-scattered reflection response. However, nothing precludes using a WEMVA-like formal-
ism in inverting transmission wavefields for velocity perturbations. One potential benefit is
that because the phase-only extrapolation operator is stated explicitly, one can represent scat-
tering as a matrix operation that provides a direct link between a velocity perturbation and the
gradient field.

In this paper, I derive a WEMVA-like framework for modeling transmission wavefields. I
then use the waveform inversion objective function (Pratt and Worthington, 1989) to develop
the equations appropriate for transmission wavefield waveform inversion using one-way ex-
trapolation operators. Finally, I demonstrate that forward modeling in generalized coordinate
systems (Sava and Fomel, 2005) does not pose any theoretical difficulties for the inversion
process.
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WEMVA FORWARD MODELING

Following Sava and Biondi (2004), I develop equations for imaging by wavefield extrapolation
based on recursive continuation of the wavefields U from a given depth level to the next by
means of an extrapolator operator E

Uz+1z = Ez[Uz], (1)

where Ez[] = eikz1z , kz is extrapolation wavenumber, and 1z is the depth step. Throughout this
paper, I use a notation where A[x] denotes that operator A is applied to a field x . Subscripts z
and z +1z correspond to quantities associated with depth levels z and z +1z, respectively.

Using this operator notation, a data wavefield D can be recursively extrapolated through
a medium described by model parameters (i.e. slowness). This operation can be written
explicitly in matrix form,
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where 1 is an identity operator, and fields without subscripts (e.g. U and D) refer to complete
wavefields. Equation 2 is written more compactly as

(1−E)U = D , (3)

where (1−E) is a Green’s function G0(x′,x) between levels x and x′ generated by wavefield
extrapolation. The Green’s function satisfies the following adjoint definitions,

(1−E) = G0(x′,x) = G†
0(x,x′), (4)

(1−E)−1 = G†
0(x′,x) = G0(x,x′), (5)

where superscripts −1 and † indicate the inverse and adjoint operation (i.e. complex transpose),
respectively.

Source wavefields well-modeled by a delta function exhibit the following relationships,

U(x,s) = (1−E)−1
D = G0(x,x′)δ(x′ − s) = G0(x,s), (6)

where G0(x,s) describes the propagation from source point s throughout the domain denoted
by x. Note that the choice of s is arbitrary and an equivalent development applies for a receiver
Green’s function G0(x,r),

G0(x,r) = G0(x,x′)δ(x′ − r) = (1−E)−1 δ(x′ − r), (7)

where r is receiver location.
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Introducing velocity perturbations

If a velocity perturbation is applied at some depth level, a perturbed wavefield 1U can be
derived from the background wavefield by application of the chain rule to equation 1,

1Uz+1z = Ez[1Uz]+1Vz+1z , (8)

where 1Vz+1z represents the scattered wavefield generated at z + 1z by the interaction of
the velocity model at depth z. Field 1Uz+1z is the accumulated wavefield perturbation corre-
sponding to the slowness perturbations at all levels above. It is computed by extrapolating the
wavefield perturbations from the level above 1Uz , plus the scattered wavefield at this level,
1Vz+1z .

Equation 8 is also a recursive equation that can be written in matrix form
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or in more compact notation as,

(1−E)1U = 1EU. (11)

Operator 1E denotes a perturbation of the extrapolation operator E, while quantity 1EU

represents a scattered wavefield and is a function of the medium perturbation given by the
scattering relationship derived in Appendix A. For single scattering we write,

1Vz+1z ≡ 1Ez[Uz] = Ez[Sz(Ũz)[1s]], (12)

where Sz is the scattering operator, and 1s is slowness perturbation. This expression yields a
recursive relationship that can be written in matrix form:
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or in more compact notation

(1−E)1U = ES1s, (14)

where vector 1s denotes slowness perturbations at all depths.

Finally, introducing

L = (1−E)−1 ES, (15)

we can write a simple relationship between slowness 1s and wavefield 1U perturbations:

1U = L1s. (16)

This expression represents the wavefield scattering caused by the interaction of the background
wavefield with the a medium perturbation. The total modeled field 9m is defined as,

9m(r,s) = Ũ(r,s)+1U(r,s), (17)

where Ũ is the background wavefield modeled by equation 3.

WAVEFORM INVERSION PROBLEM

The goal of waveform inversion is to invert for the optimal set of velocity perturbations that
minimize the difference between forward-modeled waveforms and acquired data. The first
step in setting up the inverse problem is defining data residuals, 19,

19(r,s;ω) = 9m(r,s;ω)−9d (r,s;ω), (18)

where 9d(r,s) is the recorded data. The L2 residual norm is used to set up an objective
function,
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This results in the following least-squares estimate of the slowness perturbations

1s(x) = −
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L†19. (21)

From here on, the sum over all sources and receivers is implicitly assumed. Also, we discuss
only the gradient vector and the filtering of the gradient by the inverse Hessian matrix

(

L†L
)−1

is implicitly assumed.

The adjoint gradient operator L† is a composite matrix consisting of a number of chained
operators (from equation 15):

L† = S†E† ((1−E)−1)† , (22)

where scattering operator or at each extrapolation interval, Sz is defined by (see Appendix A),
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where Fz is considered a filter. This allows us to write composite operator L† with scattering
S† and filter F† matrices as,
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Inserting this expression into equation 21 yields,
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Thus, using the relationship in equations 6 and 7, leads to the following result,

1s ≈ −ω2G†
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Relationship to Pratt’s approach to waveform inversion

Equation 26 is a direct statement of the waveform inversion procedure of Pratt and Worthing-
ton (1989) and Sirgue and Pratt (2004). However, the use of one-way operators leads to the
definition of a explicit scattering operator and a slightly different gradient operator:
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s
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]

, (Pratt) (27)
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]

. (WEMVA) (28)

Note that the two approaches are similar: the wavefield residuals are back-projected from
the source point through the model and correlated with the source Green’s function. This
approach, though, has the scattering matrix chained between the source and receiver Green’s
functions. This derives from the application of a differential operator directly on the phase of
the extrapolation operator.



114 Shragge

CONCLUSION

This paper introduces an approach to waveform inversion that builds from the WEMVA theory
developed by Sava and Biondi (2004). The main differences between the this approach and
that of Pratt and Worthington (1989) is that this formalism provides a scattering operator that
permits a direct estimate of the slowness perturbation. Future work will implement this scheme
into a transmission wavefield WEMVA scheme.
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APPENDIX A

This appendix develops a WEMVA scattering operator (Sava and Biondi, 2004) for use in
transmission wavefield waveform inversion. The extrapolation operator, E, is given by,

Ez[] = eikz1z , (A-1)

where kz is the depth wavenumber and 1z is the extrapolation depth step. The extrapolation
wavenumber in depth is given by

kz =
√

ω2s2 −|k|2, (A-2)

where ω is temporal frequency and |k| is the horizontal wavenumber magnitude.

The vertical wavenumber can be separated into two components, one corresponding to the
background medium, k̃z, and one corresponding to a perturbation, 1kz , such that,

kz = k̃z +1kz . (A-3)

In a first-order approximation, we can relate these two extrapolation wavenumbers by a Taylor-
series expansion,

kz ≈ k̃z + dkz
ds
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(s − s̃), (A-4)

where s(x , z) is the slowness and s̃(z) corresponds to a background slowness.

Within any depth slab we can extrapolate the wavefield from the top, either in the perturbed
or in the background medium. The wavefields at the bottom of the slab, Ũz+1z = Uzeik̃z1z

and Uz+1z = Uzeikz1z , related by,

Uz+1z ≈ Ũz+1zei1kz1z . (A-5)

Equation A-5 is a direct statement of the Rytov approximation, because the wavefields at the
bottom of the slab correspond to different phase shifts related by a linear equation. Thus, we
obtain the wavefield perturbation 1V at the bottom of the slab by subtracting the background
wavefield Ũ from the perturbed wavefield U:

1Vz+1z ≈ Uz+1z − Ũz+1z

≈
(

ei1kz1z −1
)

Ũz+1z (A-6)

≈ eik̃z1z
(
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For the Born approximation, we further assume that the wavefield differences are small so
that we linearize the exponential function according to ei1φ ≈ 1+ i1φ. With this approxima-
tion we write the following downward continued scattered wavefield,

1Vz+1z ≈ eik̃z1z
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which, in operator form is

Sz(Ũz[1sz]) ≈ i
dkz

ds
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The Born operator may be implemented in the Fourier domain relative to a constant refer-
ence slowness in any individual slab. In this case,
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, (A-9)

where η is a damping parameter to avoid division by zero.

Figure A-1 shows the amplitude weighting demanded by the filter in equation A-9 for five
different frequencies for slowness 0.5 s/km.

Figure A-1: Example of the Born am-
plitude weighting function demanded
by the WEMVA theory for a slowness
of 0.5 s/km and a damping factor of
0.001. jeff2-KXfilter [NR]
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Waveform Inversion in Riemannian Space

Waveform extrapolation employing forward modeling in Riemannian coordinates (Sava and
Fomel, 2005; Shragge, 2006) does not present a problem for general approach to waveform
inversion developed herein because inversion does not take place in generalized coordinates.
Rather, the calculated Green’s functions are transformed back to global Cartesian grid through
mapping pair

G0(ξ ,s) ≈ T(x;ξ )G0(x,s) (A-10)
G0(x,s) ≈ T†(x;ξ )G0(ξ ,s) (A-11)

where T is a transformation matrix that interpolates from the Riemannian space defined by
ξ to global Cartesian space x that includes the transformation Jacobian. In practice, this is
applied using weighted sinc interpolation. Thus, one may rewrite the adjoint of equation 26 in
the following manner

1s(x) ≈ −ω2
∑

s

∑

r
T†(x;ξ )G†

0(ξ ;s)F†(ξ )E†(ξ )G†
0(ξ ;r)19(r,s). (A-12)
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