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Optimized implicit finite-difference migration for TTI media:
A 2D synthetic dataset

Guojian Shan

ABSTRACT
I review optimized implicit finite-difference migration for tilted TI media. The implicit
finite-difference scheme is designed by fitting the dispersion relation with rational func-
tions using least-squares optimization. I apply the method to a synthetic dataset. The
result shows that the algorithm can handle laterally varying tilted TI media.

INTRODUCTION

Implicit finite-difference methods that are adapted to strongly laterally varying media and
guarantee stability, have been one of the most attractive methods for isotropic media. Tradi-
tional implicit finite-difference migration methods are based on the truncation of the Taylor
series of the dispersion relation. For anisotropic media, phase-shift plus interpolation (PSPI)
methods (Rousseau, 1997; Ferguson and Margrave, 1998) or explicit finite-difference methods
(Uzcategui, 1995; Zhang et al., 2001a,b; Baumstein and Anderson, 2003; Shan and Biondi,
2005; Ren et al., 2005) are usually chosen for migration because the dispersion relation of
anisotropic media is very complex and it is difficult to derive a Talyor series for the implicit
finite-difference scheme with high accuracy. However, TTI (tilted TI) media are not circu-
larly symmetric and a 2D convolution operator is required instead of the McClellan transfor-
mations (Hale, 1991) to implement the explicit finite-difference scheme (Shan and Biondi,
2005). Although Lloyd’s algorithm can be used to reduce the number of reference velocity
and anisotropy parameters in PSPI (Tang and Clapp, 2006), too many reference wavefields are
required to achieve decent accuracy in a strongly laterally varying TTI medium.

Lee and Suh (1985) approximate the square-root operator with rational functions and op-
timize the coefficients by least-squares function fitting. This method improves the accuracy
of the finite-difference scheme without increasing the computational cost. Under the weak
anisotropy assumption, Ristow and Ruhl (1997) design an implicit finite-difference scheme
for VTI (transversely isotropic with a vertical symmetry axis) media. Liu et al. (2005) ap-
ply a phase-correction operator (Li, 1991) in the Fourier domain in addition to the implicit
finite-difference operator for VTI media and improve the accuracy. Shan (2006b) approxi-
mates the dispersion relation of VTI media with rational functions and obtains the coefficients
for the finite-difference scheme by using the weighted least-squares optimization. Similarly,
Shan (2006a) designs implicit-finite difference scheme for TTI media by fitting the dispersion
relation with rational functions and shows impulse responses in a homogeneous medium.
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In this paper, I review the optimized implicit finite-difference method for TTI media and
apply it to a 2D synthetic dataset to verify the methodology in laterally varying media.

OPTIMIZED FINITE-DIFFERENCE FOR TTI MEDIA

The dispersion relation of TTI media can be characterized by a quartic equation as follows:

d4S4
z +d3S3

z +d2S2
z +d1Sz +d0 = 0, (1)

where the coefficients d0,d1,d2,d3, and d4 are defined as follows:
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x −1−

[
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f
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where ε and δ are Thomsen anisotropy parameters (Thomsen, 1986) and ϕ is the tilting angle
of the media. Theoretically, equation 1 can be solved analytically, but there is no explicit
analytical expression for its solution. The solid line in Figure 1 shows how the dispersion
relation looks, given the anisotropy parameters ε = 0.4, δ = 0.2 and the tilting angle ϕ = 30◦.
Note that Sz is not a symmetric function of Sx . And Sz has two branches when Sx > 0.8. One
of them represents the up-going waves and the other one represents the down going waves.
Therefore, in a TTI medium waves may overturn even though it is homogeneous.

Conventional implicit finite-difference methods are designed by truncating the Taylor se-
ries of the dispersion relation. The dispersion relation for TTI media is so complex that it is
difficult to derive an analytical Taylor series used for an implicit finite-difference scheme.

Generally, the Padé approximation suggests that if the function Sz(Sx) ∈ Cn+m , then Sz(Sx)
can be approximated by a rational function Rn,m (Sx):

Rn,m(Sx) =
Pn(Sx)
Qm(Sx)

, (2)

where

Pn(Sx) =

n
∑

i=0
ai S i

x

and

Qm(x) =

m
∑

i=0
bi S i

x

are polynomials of degree n and m, respectively. The coefficients ai and bi can be obtained
either analytically by Taylor-series analysis or numerically by least-squares fitting.
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Sz is an even function of Sx for isotropic and VTI media. In contrast, Sz is not an symmetric
function of Sx for TTI media. It’s well known that an general function can be decomposed
into an even function and an odd function. We approximate the even part of the dispersion
with the even rational functions, such as S2

x , S4
x and approximate the odd part with odd rational

functions, such as Sx , S3
x .

Figure 1: Comparison of the true and approximate dispersion relations for a TTI medium with
ε = 0.4, δ = 0.2 and ϕ = 30◦: the solid line is the true dispersion relation for TTI media; the
dashed line is the approximate dispersion relation for finite-difference scheme. The dispersion
relation for the finite-difference scheme is very close to the true one for negative Sx . When
the phase-angle is close to 90◦ or more than 90◦ for the positive Sx , the dispersion for the
finite-difference scheme diverge from the true one. guojian2-dispersion [ER]

Considering the stability of the finite-difference scheme, I approximate the dispersion re-
lation of TTI media with rational functions as follows:

Sz(Sx) ≈ Sz0 +
a1S2

x + c1Sx

1+b1S2
x

+
a2S2

x + c2Sx

1+b2S2
x

, (3)

where Sz0 = Sz(0) and the coefficients a1,b1,c1,a2,b2,c2 are estimated by least-squares opti-
mization. They are functions of the anisotropy parameters ε, δ and the tilting angle ϕ. Figure 1
compares the true dispersion relation with the approximate dispersion relation. The solid line
is the true dispersion relation (equation 1) and the dashed line is the approximate dispersion
relation for the finite-difference scheme ( equation 3). The dispersion relation for the finite-
difference scheme is very close to the true one for the negative Sx . When the phase-angle is
close to 90◦ or more than 90◦ for positive Sx , the dispersion for the finite-difference scheme
diverges from the true one. Figure 2 shows the relative dispersion error defined as follows:

E(Sx) =
S f d

z (Sx)− S true
z (Sx)

S true
z (Sx)

, (4)

where S true
z (Sx) is the value of Sz calculated from equation 1 and S f d

z (Sx) is the value of Sz
from equation 3 using the coefficients from the least-squares estimation.

For a laterally varying medium, the anisotropy parameters vary laterally. As a conse-
quence, the coefficients for the finite-difference scheme vary laterally. It is too expensive to
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Figure 2: Relative dispersion relation error of finite-difference approximation for a TTI
medium with ε = 0.4, δ = 0.2 and ϕ = 30◦. guojian2-err [ER]

estimate these coefficients for each discrete grid during the wavefield extrapolation. After es-
timating the minimum and maximum value of the anisotropy parameters and the tilting angle,
I compute the coefficients for the anisotropy parameters and the tilting angle in these ranges
and store them in a table before the migration. During the wavefield extrapolation, given the
anisotropy parameters ε, δ, and the tilting angle ϕ, I search the coefficients in the table and put
them into the finite-difference scheme. Given the coefficients found from the table, the finite
difference algorithm in TTI media is the same as the isotropic media. The table of coefficients
is small, and the computation cost for table-searching is trivial compared to that of solving the
finite-difference equation. Therefore, the cost of the optimized implicit finite-difference for
TTI media is similar to that of the conventional finite-difference methods for isotropic media.

2D SYNTHETIC DATA EXAMPLE

Figure 3 shows an anisotropic model with a thrust sheet embedded in the isotropic background
(Fei et al., 1998). Figure 3(a) shows the tilting angle of the thrust, Figure 3(b)-(d) show the
velocity, the anisotropy parameters ε and δ of the model, respectively. This model represents
the thrust shale layer usually seen in the Canadian Foothills. In the thrust sheet, the anisotropy
parameter ε is 0.224, the anisotropy parameter δ is 0.10, and the velocity ( in the direction
paralleling to the symmetry axis) is 2925m/s. The background velocity is 2740m/s. The
tilting angles of the anisotropic layer are 0◦, 30◦, 45◦ and 60◦. There are 86 shots recorded
with a split-spread geometry.

Figure 4 compares images of the synthetic dataset. Figure 4(a) is the image migrated by
using an isotropic migration, Figure 4(b) is the image obtained by an anisotropic migration
regarding the model as VTI media (Shan, 2006b), and Figure 4(c) is the image obtained by an
anisotropic migration for TTI media. In Figure 4(a) and (b), the low boundary of the thrust
sheet are not at the right position and the flat reflector does not focus at the right position in
the area below the thrust sheet (at "A"). These features are imaged well in Figure 4(c) by the
anisotropic migration for TTI media.
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At "B", the low boundary of the 60◦ thrust sheet is better imaged in the isotropic migration
(Figure 4(a)), compared to the migration for VTI media (Figure 4(b)). For the high-angle
energy in a TTI medium with a large tilting angle, the velocity of the waves is close to the
velocity in the symmetry-axis direction. When we regard the medium as a VTI medium, for
the high-angle energy we use the velocity close to the velocity in the direction normal to the
symmetry axis. In contrast, we use the velocity paralleling the symmetry axis in the isotropic
migration. That is why the low boundary of the 60◦ thrust sheet at "B" is better imaged by the
isotropic migration compared to the anisotropic migration for VTI media.

CONCLUSION

I present the optimized implicit finite-difference method for wavefield extrapolation in TTI
media. The 2D synthetic dataset shows that the algorithm is stable and works for laterally
varying media.
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Figure 3: The velocity model and anisotropy parameters: (a) the tilting angle of the TTI
medium; (b) the velocity paralleling the symmetry axis; (c) the anisotropy parameter ε; (d) the
anisotropy parameter δ. guojian2-model [ER]



64 Shan SEP–129

Figure 4: Image comparisons: (a) the image obtained by the isotropic migration; (b) the
image obtained by anisotropic migration for VTI media; (c) the image obtained by anisotropic
migration for TTI media. guojian2-image [CR]
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