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Short Note

Moveout analysis with flattening

Robert G. Clapp

INTRODUCTION

Moveout analysis is an important component of many data processing steps. The most basic
application is Normal Moveout (NMO), where curvature is related to velocity. Radon based
multiple removal techniques take advantage of the differing moveout of primaries and mul-
tiples (Hampson, 1986). Migration velocity analysis often measures curvature in common
reflection point gathers in either the offset domain or angle domain.

Moveout analysis involves testing potential trajectories by applying a series of moveout
functions. A new domain is created where one (or more) of the axes is now a moveout pa-
rameter. The creation of this domain can be setup as an adjoint operation, inverse problem
((Lumley et al., 1994; Guitton and Symes, 1999), or in terms of semblance analysis. Often we
want to choose a single parameter at each time (or depth) that accurately represents the move-
out at the time (or depth). Unfortunately this a non-linear problem. Toldi (1985) and Symes
and Carazzone (1991) discuss ways of linearizing the problem. The problem becomes more
complicated if we wish to describe moveout by more than a single parameter. The volume
formed by scanning over multiple moveout parameters results in very large model spaces.
Previous authors have suggested sparse inversion techniques (Alvarez, 2006), or successive
scanning.

Another approach to the problem is to use dip information to gain moveout information.
Wolf et al. (2004) suggested applying a rough NMO correction then estimating the median
of the implied vrms from the dip information at a given zero offset traveltime τ . Guitton et al.
(2004) built more directly on the flattening work of Lomask and Claerbout (2002); Lomask and
Guitton (2006); Lomask (2006). Guitton et al. (2004) τ -based tomography problem (Clapp,
2001) based on the time-shifts calculated from flattening the data. The advantage of this
formulation is that picking becomes unnecessary. The problem with these approaches, when
applied to moveout analysis, is the non-linear nature of flattening can easily lead to unrealistic
local minima and may not converge to a satisfactory result.

In this paper I also take advantage of the power of flattening while attempting to avoid
its pitfalls by limiting the model space. The first approach is to set up an inverse problem
from the time shifts needed to flatten a series of Common Reflection Point (CRP). I first invert
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for a single parameter at each depth, and then two parameters. In the second approach I set
up a non-linear inverse problem that relates dips directly to velocity. Both techniques show
promise, but additional work is needed.

CHARACTERIZING RESIDUAL MOVEOUT

In migration velocity analysis there is always a debate on the best method to describe the
moveout seen in CRP gathers. One approach is to measure and invert the moveout at many
depths in each offset/angle of the CRP gather independently. Using this approach, complex
residual moveouts can be accurately described. The downside is that these estimates are more
prone to noise (cycle skipping for example). The other extreme is to use a single parameter (at
many depth locations) that best describes the moveout as a function of offset or angle. A single
parameter is more robust but in complex situations may not accurately describe moveout. In
addition, selecting the parameter usually involves selecting the moveout with the maximum
semblance at a given depth, a non-linear problem that can often lead to unrealistic solution if
not properly handled (Clapp et al., 1998).

Often a good compromise between robustness and flexibity is to describe moveout with
two parameters. Unfortunately, selecting these two linked parameters is more problematic than
the single parameter approach. One approach is to scan over both parameters at all desired
depths, for every CRP, and pick the maximum. In addition to being costly, this approach
makes picking a consistent and spatially realistic model very challenging. A potentially better
approach is outlined in Harlan (1998). He suggests a dual scanning approach: scan over the
first-order term fitting the outer offsets, then scanning over the second-order term to best fit
the middle offsets. This approach is more efficient than scanning over the entire model space.
The dual scanning approach amounts to linearizing the problem arround the first order term,
with all of the associated linearization drawbacks. In additional spatial consistency is also
problematic.

A general weakness of the scanning approach is that moveout is being determined from
semblance amplitude. Flattening offers an interesting alternative to the scanning approach.
Flattening inverts for a time shift field (moveout). By incorporating an operator that estimates
moveout parameters from time shift field, arbirtrary moveout descriptions can be estimted
from dip.

FLATTENING REVIEW

The basic idea behind flattening (Lomask, 2006) is that the gradient measured at a time (or
depth) horizon τ is equal to the dip p measured at each point of the horizon.

∇τ (x , y, t) = p(x , y,τ). (1)

In order to obtain smoothness between horizons a regularization term is added to the problem.
Defining the 3-D gradient operator as ∇ = [ ∂

∂x
∂
∂y

∂
∂ t ]T a new system of equations can be
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built,
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where I is the identity matrix and ε is a scaling parameter. The residual is defined as
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The dips need to be measured along the horizon, making the problem non-linear. A Gauss-
Newton approach can be used with linearizing about the current estimated horizon volume.
Again following the approach of (Lomask, 2006), we

iterate {

r = [Wε∇τ k −p(x , y,τ k)] (4)
1τ = ((Wε∇)T Wε∇)−1(Wε∇)T r (5)

τ k+1 = τ k +1τ (6)

} ,

where the subscript k denotes the iteration number.

Two different approaches can be used for the linearized step (equation 5) The most efficient
is to solve the problem a direct inverse in Fourier domain (Lomask, 2003). When space-
domain weighting or model restriction (Lomask and Guitton, 2006) is needed, a space-domain
conjugate gradient approach is warranted.

In general we deal with 2-D angle or offset gathers. The standard approach is to solve
a 2-D flattening problem where τ is a function of time/depth and offset. We revert to a 2-D
gradient operator, and solve each CMP/CRP gather independently.

POST-FLATTENING INVERSION

There are two general approaches to calculating moveout parameters using the flattening
methodology. The first approach is to perform parameter estimation in two phases. First, solve
for the non-linear τ field, then construct a linear problem to find the moveout parameters that
best fit the τ field.

The flattening algorithm provides a time-shift τ field that is function of depth z, offset h,
and CRP x. As a first test we want to estimate moveout of a volume migrated using downward
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continuation migration. Biondi and Symes (2003) demonstrated that residual moveout 1z can
be approximated (assuming zero geologic dip) as a function of angle θ and depth z through

1z = zρtan(θ )2, (7)

where ρ is the moveout paremeter. We can estimate ρ(z,z) as a global inverse problem. Defin-
ing the above moveout equation above as Bmwe obtain the objective function Q,

Q(ρ) = |τ −Bρ|2. (8)

We can ensure spatial smoothness by introducing a roughener A to the objective function to
obtain,

Q(ρ) = |τ −Bρ|2 + ε2|Aρ|2, (9)

where ε is scaling parameter.

To test the methodology I migrated a line from a 3-D North Sea dataset. Figure 1 displays
two cross-sections of the migrated data (left) and the τ field (right) calculated from the volume.
A moveout field ρ is then calculated from the τ field using a conjugate gradient algorithm to
minimize equation 9. Figure 2 shows the resulting moveout field. The inversion approach
has an additional advantage, it easy to assess where the moveout parameterization effectively
described the time shifts and where it failed. Figure 3 shows the result of stacking the absolute
value of the residual over the offset plane. Areas of high amplitude represent areas where a
single parameter did not accurately describe τ .

Figure 1: The left panel shows three cross-sections of the migrated image (depth, inline, an-
gle). The right panel shows the time shifts calculated from the volume. bob3-data [ER]
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Figure 2: The result of inverting for the moveout parameter ρ from the time shifts shown in
the right panel of Figure 1. bob3-rho1 [ER]

Figure 3: The spatial error fitting error associated with the time shifts shown in Figure 1 and
the moveout parameter shown in Figure 2. bob3-resid1 [ER]
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Rather than solving for a single moveout parameter at each location, we can solve for
multiple moveout parameters simultaneously. To test this approach I introduced a new operator
C that estimates the moveout parameter µ by searching for higher order moveout anomalies.
For C I chose an arbitrary moveout function,

1z = µztan(θ )4 (10)

that attempts to see if a higher polynomial of the same form as C to help to describe the
moveout. The optimization goal of equation (9) becomes

Q(ρ,µ) = |τ −Bρ −Cµ|2 + ε2|Aρ|2 + ε2|Bµ|2. (11)

Figure 4 shows the resulting ρ (left) and µ (right) fields. Note how similar the ρ field is to the
one in Figure 2, indicating that a two-stage estimation approach would have yielded a similar
result. Figure 5 shows the resulting residual. Note the decrease in some areas compared to
Figure 3, but still showing areas where the moveout is significantly more complex.

Figure 4: The result of inverting for both ρ (left panel) and µ (right panel). Note the similarity
to the single parameter estimation shown in Figure 2. bob3-rho2 [ER]

Figure 5: The fitting error associated
with the two parameter fitting shown
in Figure 4. bob3-resid2 [ER]

The methodology of this section assumed that the τ field was accurate. The non-linear
nature means this assumption is problematic, particularly when we are far from the correct
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solution. In the context of the moveout problem, this means we are far from flat the defacto
starting guess.

LIMITING FLATTENING MODEL SPACE

The two-stage approach of the last section is only applicable when the τ estimation is able to
fully describe the moveout in the gather. When it cannot, another approach must be found.
The left panel of Figure 6 is a synthetic CMP gather created by bandpassing random numbers,
and then spraying them out with adjoint of NMO. The right panel of Figure 6 shows the result
of estimating time shifts (7 Gauss-Newton steps) and then applying those time shifts to flatten
the data. Note that the flattening approach has failed in several areas.

Figure 6: The left panel is a synthetic CMP gather. The right panel shows the result of flatten-
ing the CMP gather using the standard approach. Note the waviness of several reflectors due
to the the non-linear nature of the flattening technique. bob3-syn [ER]

Estimation of the time shifts is problematic because the problem is inherently non-linear.
One successful strategy is to try to start with an initial guess that is as close as possible to the
correct solution. Another is to limit the model space to feasible candidates. In this simple
case we know that the moveout is governed by the NMO equation. We can linearize the NMO
equation that relates time shifts τ , zero offset time t0, offset h, and slowness s through

τ =

√

t2
0 +h2s2 − t0 (12)

around our initial slowness s0. We obtain an equation,

1τ =
h2s0

√

t2
0 +h2s2

0

h2s01s, (13)

that relates 1τ to τ s. The implied operator H then helps to form the linearized optimization
equation,

Q(1s) = |Wε∇H1s−1p|2. (14)
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In practice we need to add an additional weighting operator W0 which accounts for areas
effected wavelet stretch and for reflections that exist at zero offset, but not at larger offsets. As
a result we must use a space-domain conjugate gradient scheme

Q(1s) = |W0Wε∇H1s−1p|2. (15)

Figure 7 shows the flattened CMP gather using the slowness model space description. While
not perfect, the result is significantly flatter than the alternative approach (right panel of Fig-
ure 6).

Figure 7: The flattened CMP gather
using a Gauss-Newton scheme with
the model space limited to hyperbolic
moveout. The result is much flat-
ter than the standard parameterization
scheme show in the right panel of
Figure 7. bob3-cmp [ER]

Figure 8 shows the result of applying both techniques to a CMP gather from the same
North Sea dataset used in the previous section. The left panel is the raw gather, the center
panel uses the conventional technique, and the right panel limits the moveout description to a
single hyperbolic parameter. Note how both approaches fail at early times but the hyperbolic
description provides noticably better result.

CONCLUSIONS

Flattening is used to analyze moveout. Two different approaches are used. The first approach
uses time shift information generated through flattening as the ‘data’ in inverting for one or
more moveout parameters. The second approach directly relates dips to a moveout parameter.
Both approaches show promise but additional work is needed.
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