
Stanford Exploration Project, Report 129, May 6, 2007, pages 253–??

252



Stanford Exploration Project, Report 129, May 6, 2007, pages 253–??

Accelerating subsurface offset gathers for 3D seismic
applications using FPGAs

Oliver Pell and Robert G. Clapp

ABSTRACT
For shot profile migration construction of subsurface offset gathers can be the dominant
cost. By implementing the subsurface offset gather computation on a MAX-1 accelerator
card with a Xilinx Virtex-4 Field Programable Gate Array (FPGA), we obtain 20x speed-
up over a state-of-the-art Opteron system. By reducing data precision further speed-up
can be achieved, at minimal image degradagation.

INTRODUCTION

Downward continued based migration often provides higher quality migration results. For
velocity estimation and lithological determination they reqire a change in strategy compared
to Kirchoff based approaches. In Kirchhoff based approaches moveout and amplitude infor-
mation are evaluated as a function of offset. For downward continuation based methods angle
gathers are constructed from subsurface offset gathers (de Bruin et al., 1990; Prucha et al.,
1999; Biondi and Symes, 2004).

The cost of constructing the subsurface offset gathers is trivial for source-receiver migra-
tion methods based on the Double Square Root (DSR) equation (Claerbout, 1985) but can be
a dominant cost in shot profile and plane wave methods (Rickett and Sava, 2002). With the
increased use of wide azimuth geometries (Michell et al., 2006) and the resulting 3-D angle
gathers, over 90% of CPU cycles can be spent in constructing the subsurface offset gathers.

Hardware accelerators are emerging as a powerful solution to computationally intensive
problems. A standard desktop PC or cluster node can be augmented with additional hardware
dedicated to providing substantially increased performance for particular applications. Re-
search projects have shown (He et al., 2004; Zhang et al., 2005; Cheung et al., 2005; Sano et
al., 2007) that FPGA-based hardware accelerators can offer order-of-magnitude greater per-
formance than conventional CPUs, provided the algorithm to be accelerated performs a large
number of operations per data point.

Construcing subsurface offset gathers involves a significant number of operations for each
data point, making it an ideal candidate for acceleration. We implement subsurface offset
gather construction on a FPGA. We show that a 20x speed-up is achievable using 32-bit pre-
cision. Further we demonstrate that 40x speed-up can be achieved by using a lower precision

253



254 Pell and Clapp SEP–129

representation of the data, with minimal image degredation.

ANGLE GATHERS FROM SHOT PROFILE MIGRATION

Claerbout (1971, 1985) noted that you could simulate sources and receivers in the subsurface
by applying the DSR equation to the wavefield recorded at the surface. For 3-D source-receiver
based migration methods a 4-D volume (cmpx,cmpy, hx, hy) is downward continued and the
the zero-time, zero-offset portion of the volume is the image of the subsurface at that depth. In
shot profile migration the source and receiver wavefields are downward continued seprately by
the Single Square Root (SSR) equation. To obtain an image I at a given depth z and location
x:

I (x,z) =

∑

s

∑

w
S(x,z,w,s)G∗(x,z,w,s), (1)

where S is the source wavefield, G is the receiver wavefield, w is the temporal frequency, and
s is the shot index.

de Bruin et al. (1990), Prucha et al. (1999) and Biondi and Symes (2004) all provided
mechanisms to create reflectivity as a function of angle based on the focusing of the energy
arround zero-offset. In source-receiver migration, the analysis is naturally done by analyzing
the focusing in the h plane. In shot profile migration h does naturally occur. Rickett and Sava
(2002) explained how to create subsurface offset for shot profile migration by cross-correlating
the source and receiver fields by various shifts. As a result subsurface offset volumes can be
created by applying:

I (h,x,z) =

∑

s

∑

w
S(x−h,z,w,s)G∗(x+h,z.w,s). (2)

The cost of constructing these sub-surface offset gathers can be significant. The cost of
downward continuing a single shot a single depth step is dominated by the FFT cost which
grows by (nlogn) with the size of the data n. The cost of constructing the subsurface offset
gathers is on the order of nh ∗n, where nh is the number of subsurface offsets. Constructing a
2-D subsurface offset gather can be the dominant cost in shot profile migration. To construct
a 3-D subsurface offset gather as part of the migration, over 95% of the compute time is
common.

STREAMING PROCESSORS

Traditionally, performance increases have come from microprocessor frequency scaling. How-
ever, due to power and other constraints, scaling looks to only deliver modest performance im-
provements in the future. In the future large performance improvements demanded by com-
putationally intensive applications must come from exploiting parallelism. Intel and AMD



SEP–129 Accelerating offset gathers using FPGAs 255

are scaling up the number of cores per chip and processors per node in order to higher de-
grees of Symetric Multi-Processor (SMP). Existing software has to be modified to take advan-
tage of potentially modest speed improvements that remain limited by a machine’s memory
bandwidth. The change in software presents an opportunity to move beyond conventional
processors to custom accelerators. These accelerators offer the potential of much higher per-
formance by delivering parallelism that is tailored to a particular application. In particular,
streaming processors offer a route around the “memory wall” by maximising operations per-
formed per data item retrieved from memory. Stream processors can be implemented using
Field-Programmable Gate Arrays (FPGAs) and can speed up highly parallel applications by
over an order of magnitude. FPGA acceleration has been successfully demonstrated in a vari-
ety of application domains including computational finance (Zhang et al., 2005), fluid dynam-
ics (Sano et al., 2007), cryptography (Cheung et al., 2005) and seismic processing (He et al.,
2004).

COMPUTING WITH FPGAS

FPGAs are Complementary Metal Oxide Semiconductor’s (CMOS) technology based chips
containing logic which can be configured to any digital circuit and a limited number of mem-
ory elements including RAMs and registers. In fact, FPGAs can be re-configured several times
per second, offering a flexible substrate for application specific circuits. The price of recon-
figurability is a 10x slower clock frequency compared to today’s state-of-the-art Pentium and
Opteron processors. Modern FPGAs contain on the order of 105 independent logic cells, all of
which can operate in parallel. This massive parallelism more than compensates for the 10x re-
duction in clock frequency versus a state-of-the-art CPU, delivering orders of magnitude more
compute power within a reasonable power budget. FPGAs have shown excellent potential as
hardware accelerators for a wide class of applications. Compute-intensive algorithms can be
mapped directly into parallel FPGA hardware, tightly coupled to a conventional CPU through
a high-speed I/O bus, enabling key hotspots in an application to be accelerated by over an
order-of-magnitude. The performance potential of FPGAs arises from exploiting stream pro-
cessing. In a typical CPU, instructions are executed sequentially (Figure 1). Despite the high
clock frequency, data throughput can be quite limited since there is limited scope for paral-
lelism, even in modern superscalar processors with vector (SIMD) units. For many algorithms
a streaming approach (Figure 2) delivers significant benefits. FPGA stream processors operate
continuously on streams of data. Data is transferred to the accelerator once, over a high-speed
I/O bus such as PCI Express, then it passes from one processing element to the next as it is
required for each operation. The FPGA circuit computes one or more results each and every
cycle without any of the control overhead associated with CPU conditionals, loops, etc. On-
chip memory implements a custom “perfect cache” which retains data on-chip for precisely
as long as it is required for the computation. A large number of compute units operating in
parallel overcome the compute limitations of the CPU, while the on-chip storage structure
and MISD (multiple instruction, single data) operation significantly mitigate the memory lim-
itations of the CPU. Stream processors show potential for accelerating seismic applications
operating on large datasets, since only a small fraction of the data needs to be stored on-chip



256 Pell and Clapp SEP–129

at any one time. This makes the approach scalable to multi-dimensional problems with tens of
gigabytes of data, since the primary storage medium remains CPU main memory. FPGAs are
usually regarded as hard to program, with building FPGA accelerators essentially being a mat-
ter of hardware design. We develop this accelerator at a higher level of abstraction using the
ASC (Mencer, 2006) compiler. ASC, A Stream Compiler for FPGAs, provides a software-like
interface to FPGA design based on C++, while retaining the performance of hand-designed
circuits. At the top level, ASC code closely resembles C code, allowing a relatively low cost
transition from a C-based software implementation to the FPGA hardware implementation.
One key difference between ASC and a conventional imperative programming language is
that the standard semantics for all operations performed in parallel and all operators are vector
operations performed on streams of data. To transfer code to an FPGA accelerator we identify
loops to be accelerated, then re-write those loops in ASC code, replacing the original loop
with code which transfers data to/from the accelerator. For example, a C loop can describe a
vector increment operation as below:

int i;
int a[SIZE], b[SIZE];
for (i = 0; i < SIZE; i++)

b[i] = a[i] + 1;

This can be rewritten for FPGA implementation as:

STREAM_START;
HWint a(IN), b(OUT);
b = a + 1; // Loop is implicit

STREAM_END;

The loop has been replaced with STREAM_START and STREAM_END declarations, which identify
the boundaries of the code to be implemented on the FPGA. The integer arrays a and b are
declared as Hardware Integer type variables, one input and one output. This ASC code can
be compiled using GCC producing an executable which, when executed, generates an FPGA
circuit.

Figure 1: When computing with
a microprocessor, instructions
are executed sequentially on data
items retrieved from memory.
bob1-microproc [NR]



SEP–129 Accelerating offset gathers using FPGAs 257

Figure 2: Computing with an FPGA
involves “streaming” data through an
FPGA which has been configured to
implement a function. Here two in-
put arrays are transferred, processed,
and a single output array is produced.
bob1-streaming [NR]

CP
U 

/ M
ai

n 
m

em
or

y FPGA Stream Processor

In
te

rfa
ce

 to
 C

PU PE PE PE PE

PE PE PE PE

Bus

FPGA ACCELERATION

FPGA’s require that memory is accessed through the processor and transfered to the FPGA. In
order to obtain a meaningful speed advantage a large number of operations must be performed
for each data point. The density of arithmetic operations per data item is the key to the po-
tential for acceleration. Algorithms which use a transferred data item only once (such as the
vector add example above) are unlikely to accelerate, since the overhead of transferring the
data across the bus is significant, however algorithms such as an offset gather which use each
data item many times will accelerate significantly. Because FPGA accelerators dedicate spe-
cific resources to each operation executed, there is a maximum size to the code segment that
can be executed on-chip. This depends on not only the size of the FPGA but also the complex-
ity of the operations. Additions and multiplications can be implemented more densely than
divisions, square roots and complex functions (sin, cos etc) so algorithms in which adds and
multiplies are dominant will accelerate particularly well. This is common in seismic applica-
tions. In contrast to conventional processors, which support a fixed set of data representations
(typically integer and IEEE floating point) FPGAs offer the potential for the data representa-
tion to be customised to the application. This allows acceleration to be maximised subject to
desired accuracy constraints. The dynamic range of migration data is such that floating point
representations are not necessary, so our FPGA implementation uses fixed-point data. Fixed
point arithmetic can be implemented more densely and with lower latency on FPGAs than
floating point, so allowing for increased acceleration without loss of accuracy.

SUBSURFACE OFFSET IMAGING CONDITION ON THE FPGA

The shot profile imaging condition has a high arithmetic density, meeting the requirements for
FPGA acceleration. The zero time part of the imaging condition (Equation 2), which requires
a summing over all frequencies nf. In addition each input point is going to be used in nh cross-
correlations. Despite the high arithmetic density of the offset gather, the arithmetic capabilities
of the FPGA are substantially in excess of that required so acceleration is limited by the rate at
which data can be streamed across the bus from main memory to the accelerator. In this case,
the performance is limited by:

max(nf×2,nh)×bw (3)



258 Pell and Clapp SEP–129

where bw is the number of bits used to represent each value. This condition arises because the
PCI-Express bus is symmetric, providing limited input and output bandwidth. Two arrays (S
and G) containing nf data items per coordinate are sent to the FPGA and one array (I) is sent
from the FPGA back to the processor, containing nh data items per coordinate. By reducing
the number of bits stored for each value from 32 to 16 the performance of the operation can be
doubled, with negligible degredation in the output image. The on-chip memory requirement
is O(nf×nh), well within the capabilities of modern FPGAs for hundreds of frequencies and
dozens of subsurface offsets. This allows very large datasets to be processed easily with only
a small fraction stored on-chip at any one time.

RESULTS

To test the applicability of this approach we compared the result of constructing angle gath-
ers for the 2-D Marmousi synthetic dataset. Figure 3 show the zero-subsurface offset image
obtained from implementing the imaging step of shot profile migration on both the processor
and the FPGA. The images are indistinguisable.

The left panel of Figure 4 shows an angle gather constructed from the CPU implementation
of the imagining condition. The remaining panels show the same angle gather obtained from
the FPGA implemented imaging condition with decreasing floating point precision. Note that
visually the kinematics are identical.

To test the speed-up offered by the FPGA implementation we ran a larger 3-D problem.
Specifically the cost of constructing 41 subsurface offset gathers from 500 inline CMPS, 400
crossline cmnps, 200 frequencies, and 41 subsurface offsets. We compare our FPGA imple-
mentation to a 2.8Ghz AMD Opteron-based PC with 12GB of RAM. The software imple-
mentation was written in C and compiled using both gcc and the Intel C Compiler with full
optimization, the average of three runs was selected. The FPGA accelerator was implemented
on a Maxeler MAX-1 FPGA platform equipped with a Xilinx Virtex-4 FX100 FPGA. The
accelerator circuit consumes 58% of the logic resources of the device and runs at 125Mhz.
Table 1 shows the runtimes for the gather operation at a single depth and shot, carried out
both in software and on the FPGA. The FPGA computes the gather 19–21 times faster than
the software using 32-bit data, or 35–42 times faster than the software using 16-bit data. This
degree of acceleration transforms the application space, instead of the subsurface offset gather
being dominant the time spent computing it is now insignificant as a portion of the overall
runtime.

FUTURE WORK

In the future we plan to implement other portions of the shot profile algorithm on an FPGA.
The streaming approach should offer significant speed-up for both applying the SSR equation
and the 2-D FFTs.

The same subsurface imaging condition is used in both plane wave and reverse time mi-



SEP–129 Accelerating offset gathers using FPGAs 259

Figure 3: Comparison of the zero-
subsurface offset image from imple-
menting the shot profile imaging con-
dition on the processor (top) and the
FPGA (bottom). bob1-mig [NR]

ny Tsw Tf pga32 Speed-up Tf pga16 Speed-up
1 0.041 0.002 21x 0.001 41x
50 1.48 0.073 20x 0.042 35x
100 2.76 0.149 19x 0.075 37x
200 6.40 0.311 21x 0.150 42x

Table 1: Performance comparison of FPGA and 2.8GHz AMD Opteron. Tsw is the time in
seconds for the software version. Tf pga32 is the time for the FPGA processing 32-bit data,
Tf pga16 is the time for the FPGA processing 16-bit data. Speed-up is shown for both data
sizes.



260 Pell and Clapp SEP–129

Figure 4: The same angle gather obtained by various implementation of the shot profile imag-
ing condition. The top-left panel shows the result from a CPU based implementation. The
remaining panels show various FPGA implementations. Note that they are visually kinemati-
cally identical. bob1-gath [NR]

gration. Incorporating a FPGA based imaging condition into either would be trivial. Reverse
time migraton, where the cost of propogating the source and receiver wavefield is order and
magnitude more than Fourier based methods, is another exciting oppotunity for a FPGA based
solution.

CONCLUSION

We implemented the sub-surface offset imaging condition for shot profile migration on a
FPGA. We showed that a factor of 40x speed up can be obtained compared to a conventional
processor.

ACKNOWLEDGEMENTS

The second author would like to thank the sponsors of the Stanford Exploration Project for
financial support.



SEP–129 Accelerating offset gathers using FPGAs 261

REFERENCES

Biondi, B., and Symes, W., 2004, Angle-domain common-image gathers for migration veloc-
ity analysis by wavefield-continuation imaging: Geophysics, 69, no. 5, 1283–1298.

Cheung, R., Telle, N., Luk, W., and Cheung, P., 2005, Customisable elliptic curve cryptosys-
tems: IEEE Transactions on Very Large Scale Integration Systems, 13, no. 9, 1048–1059.

Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, no. 36,
467–481.

Claerbout, J. F., 1985, Imaging the Earth’s Interior: Blackwell Scientific Publications.

de Bruin, C. G. M., Wapenaar, C. P. A., and Berkhout, A. J., 1990, Angle-dependent reflectiv-
ity by means of prestack migration: Geophysics, 55, no. 09, 1223–1234.

He, C., Lu, M., and Sun, C., 2004, Accelerating seismic migration using FPGA-based copro-
cessor platform: Accelerating seismic migration using FPGA-based coprocessor platform:,
IEEE Symp. Field Programmable Custom Computing Machines 2004.

Mencer, O., 2006, ASC: A stream compiler for computing with FPGAs: IEEE Transactions
on Computer-Aided Design, 25, no. 9, 1603–1617.

Michell, S., Shoshitaishvili, E., Chergotis, D., Sharp, J., and Etgen, J., 2006, Wide azimuth
streamer imaging of mad dog; have we solved the subsalt imaging problem?: Wide azimuth
streamer imaging of mad dog; have we solved the subsalt imaging problem?:, Soc. of Expl.
Geophys., 76th Ann. Internat. Mtg., 2905–2909.

Prucha, M., Biondi, B., and Symes, W., 1999, Angle-domain common image gathers by wave-
equation migration: Angle-domain common image gathers by wave-equation migration:,
Soc. of Expl. Geophys., 69th Ann. Internat. Mtg, 824–827.

Rickett, J. E., and Sava, P. C., 2002, Offset and angle-domain common image-point gathers
for shot-profile migration: Geophysics, 67, no. 03, 883–889.

Sano, K., Iizuka, T., and Yamamoto, S., 2007, Systolic architecture for computational fluid
dynamics on FPGAs: Systolic architecture for computational fluid dynamics on FPGAs:,
IEEE Symp. Field Programmable Custom Computing Machines 2007.

Zhang, G. L., Leong, P. H. W., Ho, C. H., Tsoi, K. H., Cheung, C. C. C., Lee, D.-U., Cheung,
R. C. C., and Luk, W., 2005, Reconfigurable acceleration for monte carlo based financial
simulation: Reconfigurable acceleration for monte carlo based financial simulation:, IEEE
Intl. Conf. Field Programmable Technology 2005.



262 SEP–129


