Example 6.6: Comparison of worst-case robust, Tikhonov, and nominal least squares

% Section 6.4.2, Figure 6.16
% Boyd & Vandenberghe "Convex Optimization"
% Original by Lieven Vandenberghe
% Adapted for CVX Argyris Zymnis - 11/27/05
% (a figure is generated)
%
% Consider the least-squares problem:
%       minimize ||(A0 + u1*A1 + u2*A2)x - b||_2
% where u = [u1 u2]' is an uncertain parameter and ||u||_2 <= 1
% Three approximate solutions are found:
%   1- nominal optimal (i.e. letting u=0)
%   2- Tikhonov Regularized Solution:
%           minimize ||A0*x - b||_2 + delta*||x||_2
%      for some delta (in this case we set delta = 0.1)
%   3- worst-case robust approximation:
%           minimize sup{||u||_2 <= 1} ||(A0 + u1*A1 + u2*A2)x - b||_2)
%      (reduces to solving an SDP, see pages 323-324 in the book)

clear
cvx_quiet(false);

m = 50;
n = 20;
randn('state',0);
rand('state',0);

A0 = randn(m,n);
[U,S,V] = svd(A0);
S= diag(fliplr(logspace(-0.7,1,n)));
A0 = U(:,1:n)*S*V';
A1 = randn(m,n);  A1 = A1/norm(A1);
A2 = randn(m,n);  A2 = A2/norm(A2);

Aperb0 = [A1;A2];
p = 2;

b = U(:,1:n)*randn(n,1) + .1*randn(m,1);

% we consider LS problems || (A0 + u1*A1 + u2*A2) x - b||
% where  ||u|| leq rho

% Nominal Solution
xnom = A0\b;

% Tikhonov Regularized Solution
delta = .1;
xtych =  [A0; sqrt(delta)*eye(n)] \ [b; zeros(n,1)];

% Robust Least Squares solution
cvx_begin sdp
    variables t lambda xrob(n)
    minimize(t+lambda)
    subject to
        [eye(m) A1*xrob A2*xrob A0*xrob-b; ...
         [A1*xrob A2*xrob]' lambda*eye(2) zeros(2,1); ...
         [A0*xrob-b]' zeros(1,2) t] >= 0;
cvx_end

% Generate Random Trials
notrials=100000;
r = sqrt(rand(notrials,1));     % random on [0,1] with pdf g(r) = 2r;
theta = 2*pi*rand(notrials,1);  % uniform on [0,2pi]
v = [r.*cos(theta)  r.*sin(theta)];
ls_res = zeros(1,notrials);
rob2_res = zeros(1,notrials);
rob_res = zeros(1,notrials);
tych_res = zeros(1,notrials);

for i =1:notrials

  A = A0 + v(i,1)*A1 + v(i,2)*A2;
  ls_res(i) = norm(A*xnom-b);
  rob_res(i) = norm(A*xrob-b);
  tych_res(i) = norm(A*xtych-b);

end;


% Plot histograms
figure
%subplot(211)
[N1, hist1] = hist(ls_res,[min(ls_res):.1:max(ls_res)]);
freq1 = N1/notrials;
[N2, hist2] = hist(rob_res,hist1);
freq2 = N2/notrials;
[N3, hist3] = hist(tych_res,hist1);
freq3 = N3/notrials;



h = bar(hist3,freq3);
text(3, 0.07, 'Tikhonov');
set(h,'FaceColor',0.90*[1 1 1]);
hold on

h = bar(hist2,freq2);
text(4.2, 0.05, 'Nominal');
set(h,'FaceColor',0.80*[1 1 1]);

h = bar(hist2,freq2);
set(h,'FaceColor','none');
text(2.6, 0.2, 'Robust LS');

h = bar(hist3,freq3);
set(h,'FaceColor','none');
h = bar(hist1,freq1);
set(h,'FaceColor','none');

xlabel('||(A0 + u1*A1 + u2*A2)*x - b||_2')
ylabel('Frequency')
hold off
 
Calling SeDuMi: 1451 variables (20 free), 1429 equality constraints
------------------------------------------------------------------------
SeDuMi 1.1 by AdvOL, 2005 and Jos F. Sturm, 1998, 2001-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500
Split 20 free variables
eqs m = 1429, order n = 94, dim = 2850, blocks = 2
nnz(A) = 7430 + 0, nnz(ADA) = 2042041, nnz(L) = 1021735
 it :     b*y       gap    delta  rate   t/tP*  t/tD*   feas cg cg  prec
  0 :            3.68E-001 0.000
  1 :  5.13E+000 1.23E-001 0.000 0.3345 0.9000 0.9000   2.53  1  1  7.0E-001
  2 :  6.12E+000 3.39E-002 0.000 0.2757 0.9000 0.9000   1.34  1  1  1.7E-001
  3 :  6.59E+000 6.42E-003 0.000 0.1896 0.9000 0.9000   1.07  1  1  3.3E-002
  4 :  6.74E+000 4.87E-004 0.000 0.0758 0.9900 0.9900   1.01  1  1  2.5E-003
  5 :  6.76E+000 1.09E-004 0.000 0.2238 0.9000 0.9000   1.00  1  1  5.7E-004
  6 :  6.76E+000 8.25E-007 0.120 0.0076 0.9166 0.9900   1.00  1  1  5.6E-005
  7 :  6.76E+000 2.01E-007 0.000 0.2439 0.9000 0.8356   1.00  1  1  1.3E-005
  8 :  6.76E+000 1.95E-008 0.170 0.0968 0.9900 0.9162   1.00  1  1  1.3E-006
  9 :  6.76E+000 3.44E-009 0.000 0.1765 0.8235 0.9000   1.00  2  2  2.3E-007
 10 :  6.76E+000 2.19E-010 0.407 0.0637 0.9900 0.9882   1.00  2  2  1.4E-008

iter seconds digits       c*x               b*y
 10     50.1   Inf  6.7594994749e+000  6.7594994957e+000
|Ax-b| =  6.9e-008, [Ay-c]_+ =  6.1E-009, |x|= 1.4e+001, |y|= 8.7e+000

Detailed timing (sec)
   Pre          IPM          Post
1.312E+000    5.007E+001    3.004E-002    
Max-norms: ||b||=1.466545e+000, ||c|| = 1,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 8.39483.
------------------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +6.7595