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`1 Regularized Inversion

Ben Witten

ABSTRACT
Here an interior point inversion method is presented that solve a least squares problem
with `1 regularization. Velocity inversion can benefit from `1 regularization because the
sparse solution creates blocky velocity models. This is often more geologically accurate
than smooth models. In this paper an efficient method is present for solving `1 regularized
least squares problems. Its usefulness is shown through comparisons of previous methods
on an example using a least squares formulation for Dix inversion.

INTRODUCTION

Interval velocity estimation is an fundamental problem in reflection seismology. An accurate
velocity model is essential to creating an interpretable image from seismic data. There are
many techniques for estimating velocity (Clapp, 2001; Sava, 2004) in complex geological
settings, but these are often very expensive due to, not only, the operator but also the non-linear
nature of the problem and coherent noise that can lead the linear problem to local minima. In
this paper an inversion technique is presented for `1 regularized problems that could potentially
decrease the computation time for velocity estimation.

Grid based techniques have an additional drawback, in that they tend to create smooth
models even where sharp contrast exists. When considering velocity inversion problems, `1
regularization can be used to create a sparse solution, resulting in more “blocky” velocity mod-
els. The `1 regularization preserves sharp geologic boundaries, such as channel margins, salt
bodies, or carbonate layers. Recently, a specialized interior point method has been presented
for efficiently solving `1 regularized least squares problems (Kim et al., submitted).

A modified version of that algorithm is presented here. To exemplify its utility it will be
used to solve the least squares Super Dix equations, originally presented by Clapp et al. (1998).
Expanding on this work,Valenciano et al. (2003) introduced `1 regularization to the problem
formulation using a nonlinear iterative approach that approximated an `1 regularization. Wit-
ten and Grant (2006) solved the same problem using a MATLAB based convex optimization
solver. MATLAB, however, was pushed to its limits to solve even this small problem.

In this paper, the algorithm will be described. The method is first applied to a simple
synthetic model. Then it is applied to a real data set from the Gulf of Mexico. It initial results
compared to previous methods for this same dataset.
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THE METHOD

The general form of the problem examined by Kim et al. (submitted) is

minimize |Cu−d|22 +6n
i=1ε|ui |, (1)

where u is the model, C is an operator relating the model to the data d and ui is the model
value at point i.

In this paper a very similar problem, of the form,

minimize |W(Cu−d)|22 +6n
i=1εx |Dxui |+6n

i=1ετ |Dτ ui |, (2)

will be explored. Here u is a vector whose components range over vertical travel time depth τ

and whose values are the interval velocity squared v2
int and d is the data vector which has the

same range as u, but whose values are the scaled root-mean squared (RMS) velocities squared,
τv2

RM S/1τ , where τ/1τ is the index on the time axis. C is the casual integration operator, and
W is a weight matrix which is proportional to our confidence in the RMS velocities. As well,
Dx and Dτ are the first order finite-difference derivatives along the midpoint and travel-time
axis, respectively, and εx and ετ are the regularization parameters that control the importance
of the two model residuals, effectively controlling the smoothing.

This problem can be transformed to a convex quadratic problem with linear inequality
constraints,

minimize |W(Cu−d)|22 +6n
i=1εx vx

i +6n
i=1ετ vτ

i
subject to −vx

i ≤ Dxui ≤ vx
i i = 1, . . . ,n

−vτ
i ≤ Dτ ui ≤ vτ

i i = 1, . . . ,n, (3)

where vx ,τ serve to remove the absolute value from the problem. The new problem (3) can be
solved by interior point methods (e.g. (Ye, 1997; Wright, 1997)). With this goal in mind, we
can now construct logarithmic barrier functions, which approximate an inequality constraint
by increasing to infinity as the point approaches the constraint. For a simple problem,

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m, (4)

the logarithmic barrier function is

−

(

1
t

)

log(− fi (x)), (5)

where t > 0 is a parameter the determines how closely you approximate the constraint (Boyd
and Vandenberghe, 2004).

For the bound constraints in equation 3 the barrier functions are:

8x (u,vx ) = −6n
i=1log(vx

i +Dxui )−6n
i=1log(vx

i −Dxui ) = −6n
i=1log(vx

i
2
− (Dxui )2), (6)
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and

8τ (u,vτ ) = −6n
i=1log(vτ

i +Dτ ui )−6n
i=1log(vτ

i −Dτ ui ) = −6n
i=1log(vτ

i
2
− (Dτ ui )2), (7)

Now we can define the centering problem as,

minimize φt (u,vx ,vτ ) = t |W(Cu−d)|22 + t6n
i=1εxvx

i + t6n
i=1ετ vτ

i +8x +8τ . (8)

The centering problem is an equivalent representation to problem (3) and has a unique solu-
tion parametrized by t , called the central path which leads to an optimal solution (Boyd and
Vandenberghe, 2004). Newtons method can now be applied to the centering problem, which
involves solving a system on linear equations,

H





1u
1vx

1vτ



= −g, (9)

where H = ∇2φt (u,vx,vτ ) is the Hessian and g = ∇φt (u,vx,vτ ) is the gradient. Conjugate
gradients is used to find an approximate solution to this system. We differ from Kim et al.
(submitted) by choosing not to solve the whole system with conjugate gradients. Instead, vx

and vτ will be solved analytically, decreasing the size of the system of equations needed to be
solved solve from 3n to n, substantially reducing computational time.

‘To solve for vx analytically, take the derivative of φt (u,vx,vτ ) with respect to vx, then
solve for vx . This gives

vx
i =

1
tεx

+

√

(

1
tεx

)2
+ (Dx ui )2. (10)

The same can be done for vτ . We can also write the Hessian and gradient succinctly as,

H = t∇2 |W(Cu−d)|22 +∇28x (u,vx)+∇28τ
(

u,vτ
)

= 2tWCTC+D, (11)

where

D = diag
(

2
(

vx
1

2
+ (Dx u1)2

vx
1

2
− (Dx u1)2

+
vτ

1
2 + (Dτ u1)2

vτ
1

2 − (Dτ u1)2

)

, . . . , 2
(

vx
n

2 + (Dx un)2

vx
n

2 − (Dx un)2 +
vτ

n
2 + (Dτ un)2

vτ
n

2 − (Dτ un)2

))

(12)

where diag denotes a diagonal matrix with elements 2
(

vx
1

2
+(Dx u1)2

vx
1

2
−(Dx u1)2 +

vτ
1

2+(Dτ u1)2

vτ
1

2
−(Dτ u1)2

)

. The gra-
dient can be written as

g = ∇uφt (u,vx ,vτ )

= t(2WCT (Cu−d)+
[

2ui
vx

i
2
−Dxu2

i
+

2ui
vτ

i
2−Dτ u2

i
, . . . , 2ui

vx
i

2
−Dxu2

i
+

2ui
vτ

i
2−Dτ u2

i

]T
. (13)

Since the Hessian is constructed from more than the linear operator (it incorporates the
barrier functions), matrix multiplication is used to solve the system of equations in the Newton
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system. Thus each step of the conjugate gradient is slow, but time is saved by reducing the
overall number of conjugate gradient steps.

The final algorithm is:
given the update parameters for t , set the initial values t = 1/ε, u = 0, and vx,τ = 1.

repeat
1. Calculate vx and vτ

2. Compute the search direction 1u using conjugate gradients
3. Compute the step size s by backtracking line search
4. Update u = u+ s(1u)
5. Calculate vx and vτ update
6. Evaluate the duality gap and quit if appropriate (see Boyd and Vandenberghe (2004) for
more on Duality)
7. Update t

SYNTHETIC EXAMPLE

A synthetic data example is created to test the algorithm to make sure that it works properly.
A simple layer-cake earth model is used, shown in Figure 1. RMS velocities are then created
from this model as input data to the algorithm. If the inversion is run on this simple model,
the result is almost perfect, as shown in Figure 2. The inversion is off by a maximum of 3%,
which occurs at the bottom-most interface. This error could most likely be reduced further if
we decrease the stopping criterion.

Now 1 and 5 percent Gaussian noise is added to the RMS velocities to simulate real data.
The inversion of this noisy data with very little smoothness applied is shown in Figures 3 and
4. The noise introduced to the model shows up as block features. As more noise is added the
layers become harder to distinguish from each other. If we increase the smoothing parameters
on the `1 regularization, then much of the noise is smoothed out in the result (Figure 5 and
Figure 6 ). If the regularization parameters, εx ,τ are increased further then the result will be
even smoother (Figure 7 and Figure 8).

As seen in these examples, it is important to correctly choose the regularization parameter
to get a good inversion result that is compromise between desired blockiness and introducing
spurious elements into the model in the form high spatial frequency events. It can be seen that
not all the noise is smoothed out in either Figure 7 or Figure 8. This is because if boundaries
are sharp then the `1 regularization preserves them. The sharper the boundary, the higher the
ε needs to be smooth them out. Much of the sharp contrast, however, is also smoothed away.
From this test it became clear the smoothing along the midpoint is not currently working
properly.
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Figure 1: A simple layer cake earth model ben2-model [ER]

Figure 2: Inversion result for simple model using the algorithm above. For the simple model
shown in Figure 1, the result is almost perfect. ben2-Modvint [ER]



122 Witten SEP–129

Figure 3: Inversion of the data with 1% noise. The layer boundaries are still visible, but the
noise pollutes the results substantially. ben2-ModvintNoise [ER]

Figure 4: Inversion of noisy data with 5% noise. The noise is severe enough that the boundary
layers are no longer discernible. ben2-ModvintNoise5 [ER]
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Figure 5: Smoothed version the data with 1% noise. Much of the noise has been smoothed
out, but the sharp boundary contacts are still clear. ben2-ModvintNoiseSmooth [ER]

Figure 6: Smoothed version of the data with 5% noise. The smoothing parameter had to be
increased to get rid of much of the noise. The boundaries are more evident here than in Figure
6, but the layer boundaries are smoothed out. ben2-ModvintNoiseSmooth5 [ER]
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Figure 7: The smoothing parameters were increased further for the 1% noise. Most of the noise
is no longer visible, but the layer boundaries are not as sharp. ben2-ModvintNoiseSmooth2
[ER]

Figure 8: Smoothing parameters were increased for the 5% noise to the point that al-
most no noise is visible. Doing this, however, has smoothed out the entire result.
ben2-ModvintNoiseSmooth2-5 [ER]
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REAL DATA EXAMPLE

Real data from the Gulf on Mexico will now be examined. Figure 9 shows the RMS velocity.
Figures 10 and 11 show the previous inversion results done by Valenciano et al. (2003) and

Figure 9: RMS velocity for Gulf of Mexico data. ben2-vrms [ER]

Witten and Grant (2006), respectively. Notice that Figure 10 is smoother than Figure 11. This
is because Figure 10 uses an approximate `1 norm.

The results from both previous inversion schemes have limitations. Valenciano et al.
(2003) uses an approximate `1 norm and has no stopping criterion. Thus it requires as many
iterations as the user is willing to execute. For the result shown here, 800 conjugate gradient
steps were taken. Witten and Grant (2006) is hampered by the use of the MATLAB based ıcvx
software (Grant et al., 2006), limiting its use to small problems.

Although Figure 12 is not perfect, the inversion result for the method presented in this
paper is close to the previous results. The result in Figure 12 took only 108 iterations. All
of the major features are present in all three inversion results. The main difference is in the
smoothness of the result.

CONCLUSIONS AND FUTURE WORK

The algorithm presented in this paper offers a fast and efficient method for `1 regularized
inversion problems. By using `1 regularization the result is often more consistent geologically
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Figure 10: Inversion result from Valenciano et al. (2003). ben2-vintOld [ER]

Figure 11: Inversion result from Witten and Grant (2006). ben2-vintOldcvx [CR]
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Figure 12: Inversion result from scheme presented in this paper. The inversion appears to be
working properly as all of the main features seen in the Figures 10 and 11. The smoothing
along the midpoint axis does not work. ben2-vint [ER]

because the sharp boundaries are preserved. Even though this method reduces the number
of conjugate gradients steps, it could be slow since it must use matrix multiplication. This
can be overcome, however, if we implement the matrix multiplication in a parallel fashion as
presented by Lomask and Clapp (2006).

Further work involves applying the smoothness along the midpoint-axis and adding hard
equality and inequality constraints to the inversion, limiting the range of velocities acceptable
in different parts of the model. This would ensure that bad data did not put an impossible
velocity in a particular area, such as an ultra-low velocity at great depths. It would also allow
for other forms of data, especially ground truth through well logs, to be easily incorporated
into the inversion.
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