Stanford Exploration Project, Report 129, May 6, 2007, pages 247-252

Short Note

A New Build Environment for SEP

Ben Witten, Bill Curry, and Jeff Shragge

INTRODUCTION

The Stanford Exploration Project (SEP) has been at the forefront of computational repro-
ducible research for many years. Beginning with the introduction of active (a-doc) and in-
teractive (i-doc) documents by Claerbout (1990), SEP progressed to reproducible scripting
using cake (Nichols and Cole, 1989) and archiving on CD-ROMS to ensure that entire reports,
along with original codes and processing flows, could be distributed easily and cheaply. An
additional change occurred around SEP-89 when the more flexible GNU Make software was
introduced at SEP (Schwab and Schroeder, 1995). Testing of the reproducible workflows to
ensure complete repeatability became common practice by SEP-77 (Prucha et al., 1999).

In the summer 2006, SEP began transitioning from the Make system to SCons (Softwar
Constrution), an open-source software construction based on the Python scripting language.
The transition was largely inspired by the work of (Fomel and Hennenfent, 2007), who re-
leased the RSF/Madagascar package for generating geophysical (and more general process-
ing) work flows. A main goal of this project was harnessing the scripting power of Python into
a package for generating and checking the processing flow rules. Using the RSF/Madagascar
as a model, SEP adapted and reengineered certain aspects of the package that were not com-
pletely tooled for SEP’s research, development and computer environment. One of the main
goals was to facilitate an easy transition to SCons for all SEP personnel by retaining a lot of
the Make functionality. However, due to the use of a different scripting language and repro-
ducibility philosophy, we have included a number of new features reported herein.

INTRODUCTION TO SCONS

Recently, SEP decided to transition from Make to SCons build tool. Part of the motivation for
this change was that SCons has numerous advantages over GnuMake:

e Build rules are written in the more flexible Python scripts;
e SConstruct files containing build rules are easy to learn and edit;

e Improved ability to check for dependencies and parameter changes;

247

248 Witten et al. SEP-129

e SCons has the functionality to create multiple build environments (e.g. 32 and 64-bit);
and

e SCons can execute build rules in parallel.
The adapted RSF package also contains:

e Built-in pdflatex software that generates .pdf reports with the up-to-date SEG standard;

e An improved and efficient method for transforming LaTeX documents to html and wiki
formats using the modern latex2html and latex2wiki programs.

We discuss each of these points in the sections below.

Python

Because SCons is written in Python, it has numerous advantages when writing processing
flows, such as:

e Users can write their own build rules, tailored to their specific needs;
e Loops, conditions and string substitions are easily incorporated into the build file; and

e Lists can be used in build rules.

Dependency Checking

SCons uses MDS5 signatures to check dependencies rather than timestamps. This improves
dependency checking by:

e Ensuring updated build if the MDS5 signatures changes, which occurs when any apcect
of a file changes; and

e Including the build rules in the dependency check, so changing parameters in the build
rule updates the MDS5 signature.

COMPILING WITH SCONS

Because SCons is designed for software development, the amount of code written to generate
the SEP SCons compiling enviroment is relatively small. However, in order to remain consis-
tent with the philosophy of automatic generation of build rules for programs that is present in
the SEP make environment, some deviation from a standard SCons environment was neces-

sary.

SEP-129 SCons 249

The SEP SCons enviroment scans through C, Fortran77/90/95, Loptran, and Ratfor77/90
files present in the source directory. The source files are then scanned for files which they
depend upon (listed in use or include statements) and build rules are automatically generated
for all programs and objects in that directory. As such, no manual writing of compiling rules
in the SConstruct is necessary, although the user may opt to and turn off the automatic build
rule generation.

The current implementation of the build enviroment is contained in two files, SEPDefs.py
and SEPProg.py. The first file contains definitions of variables in a build environment that
are site-specific, such as the location of the compiler and compile options. The second file
contains several subroutine calls that automatically generate the build rules for the code in the
source directory.

Current limitations with the scanning of source files mean that there can currently only be
one module per file, and the file name must match the name of the module contained in the
file. This will change with time, of course.

BUILD RULES

It was important to keep the SCons syntax similar to the Make syntax so that everyone is
comfortable using it. We have created rules for different types of files and figures. Below is
an example of a Make rule and the same rule in SCons. The Makefile rule is given by,

RESDIR=. /Fig
%.v: %.H

<$*.H Grey >/dev/null gainpanel=a pclip=100 title=S$* out=S@
S{RESDIR}/images.v: imagel.v image2.v image3.v

vp_SideRySideAniso imagel.v image2.v image3.v > $@

We assume all “.H” files are already made. In the Make rule, we have the targets followed
by a colon, then the dependencies. The next lines are indented and give the commands. Here
we have two rules: one to make “.v” files from “.H” files and a second to combine the .v files
into a single figure. The % are used as command line wild cards, $* call dependencies, such as
RESDIR, $@is the target. Now look at the same rule in SCons.

RESDIR= ““./Fig’’

ResultER (RESDIR+' images.v’, [/ imagel .H’ , ' image2.H’, ' image3.H'],
<S{SOURCES[0]} Grey >/dev/null gainpanel=a pclip=100 title="Image 1" out=imagel.v;
<S{SOURCES[1]} Grey >/dev/null gainpanel=a pclip=100 title="Image 2" out=image2.v;
<${SOURCES[2]} Grey >/dev/null gainpanel=a pclip=100 title="Tmage 3" out=image3.v;
vp_SideBySideAniso imagel.v image2.v image3.v > S$S{TARGET}

III)

250 Witten et al. SEP-129

In the SCons rule, we have combined both of the previous Make rules. In SCons, first you
give the target (or list of targets) then the dependency (or list of dependencies) and then the
commands. The triple quotes mean that the command is broken up into more than one line.
We can replace a string with a variable. In this case,”./Fig” has been replaced by RESDIR.
Targets and sources can be referred to as ${SOURCES[1]}$ or ${TARGETS[1]}$ if there are
multiple sources or targets, where i is the position in the list on the first line. If there is only
on source or target they can be called in the build rule as ${SOURCE} or ${TARGET}.

In Make there was no way to distinguish between different build objects except with the
RESULTSER/RESULTSCR/RESULTSNR listed at the top of the Makefile. In SCons we
adapted rules from RSF for different objects:

e Flow is used to build intermediate files;
e Plot used to view intermediate figure files; and

e ResultER, ResultCR, ResultNR, which are easily-, conditionally-, and con-reproducible
results.

The Result commands are used to create anything that should not be removed when a
clean is used. ResultER is an easily reproducible result. If there is any change in the rule or
the dependency that figure will be rebuilt. ResultCR is a conditionally reproducible result that
has one of the following properties:

e require large or proprietary data set
e require parallel processing or special software

e or take 20 minutes or more to build

SCons handles a CR result by first checking to see if the file exists. If the file does not exist,
then it is created using the provided build rule. If the file does exist, then it checks to make
sure there are rules to build all of the dependencies for that file. If so, then nothing is done.
If at least one rule to build a dependency is missing then the build aborts and gives an error
message to that affect. ResultNR serves to let the “tex” portion know there is a figure and as a
place to put commands for figures that could be build, but the data has been lost.

CONCLUDING REMARKS

In this paper, we describe the benefits of switching build environments from Make to SCons.
We have also shown the basic framework of how SCons works for SEP and how a user can
take advantage of SEP’s SCons environment.

SEP-129 SCons 251

REFERENCES

Claerbout, J. F., 1990, Active documents and reproducible results: SEP—67, 139-144.

Fomel, S. and G. Hennenfent, 2007, Reproducible computational experiments using scons:
32nd IEEE International Conference on Acoustics, Speech, and Signal Processing.

Nichols, D. and S. Cole, 1989, Device independent software installation with CAKE: SEP-61,
341-344.

Prucha, M. L., R. G. Clapp, et al., 1999, Reproducible research - results from sep-100: SEP-
102, 249-252.

Schwab, M. and J. Schroeder, 1995, Reproducible research documents using GNUmake:
SEP-89, 217-226.

262 SEP-129

