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Two-way vs. one-way: Understanding the approximations

Alejandro A. Valenciano

ABSTRACT
The one-way wave-equation approximation has a big impact on migration, modeling, and
wave-equation inversion. That is why Amplitude vs. subsurface-offset (AVO), and ampli-
tude vs. reflection angle (AVA) responses of the migration of a two-way and a one-way
modeled datasets show different illumination patterns. Deconvolution by the one-way
wave-equation Hessian can be use to account for the illumination problem. But the ap-
proximations used to compute the Hessian have an impact on how effectively the medium
AVO and AVA is recover by the inversion.

INTRODUCTION

The dream of an explorationist is to be able to carry on AVO or AVA attributes analysis in
areas with poor illumination. But the quality of the images that a state of the art migration
can produce is not good enough for that purpose. One way to improve the image is to use an
inversion formalism introduced by Tarantola (1987) to solve geophysical imaging problems.
This procedure computes an image by convolving the migration result with the inverse of the
Hessian matrix.

When the dimensions of the problem get large, the explicit calculation of the Hessian
matrix and its inverse becomes unfeasible. That is why Valenciano and Biondi (2004) and
Valenciano et al. (2006) proposed the following approximations: (1) to compute the one way
wave equation Green functions from the surface to the target (or vice versa), to reduce the
size of the problem; (2) to compute the Hessian, exploiting its sparse structure; and (3) to
compute the inverse image following an iterative inversion scheme. The last item renders un-
necessary an explicit computation of the inverse of the Hessian matrix. For efficiency reasons
the Green’s functions necessary to compute the Hessian are computed by means of a one-way
wave-equation extrapolator.

In this paper I study the impact of the one-way wave-equation approximation to the wave
propagation in: migration, modeling, and wave-equation inversion. I illustrate the differences
between two-way and one-way data modeling, and the migration of two-way and one-way
modeled data.

I also show how the approximations used to compute the Hessian have an impact on the
recovery of the medium AVO and AVA response. This is done by comparing the inversion of
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the two-way modeled TRIP data, a one-way modeled data (equivalent to the use of the full
Hessian), and a one-way modeled data using an approximated Hessian.

LINEAR LEAST-SQUARES INVERSION

Tarantola (1987) formalizes the geophysical inverse problem by providing a theoretical ap-
proach to compensate for experimental deficiencies (e.g., acquisition geometry, complex over-
burden), while being consistent with the acquired data. His approach can be summarized as
follows: given a linear modeling operator L, compute synthetic data d using d = Lm where
m is a reflectivity model. Given the recorded data dobs , a quadratic cost function,

S(m) = ‖d−dobs‖
2 = ‖Lm−dobs‖

2, (1)

is formed. The reflectivity model m̂ that minimizes S(m) is given by the following:

m̂ = (L′L)−1L′dobs = H−1mmig, (2)

where L′ (migration operator) is the adjoint of the linear modeling operator L, mmig is the
migration image, and H = L′L is the Hessian of S(m).

The main difficulty with this approach is the explicit calculation of the inverse Hessian. In
practice, it is more feasible to compute the least-squares inverse image as the solution of the
linear system,

Hm̂ = mmig , (3)

by using an iterative inversion algorithm.

Equation 3 states that if we convolve the Hessian matrix H with a perfect model we should
obtain the migration result ("Hessian impulse response"). In the next section we will study
the approximations involved in the computation of the Hessian matrix, and will try to un-
derstand how far the "Hessian impulse response" computed using the approximated Hessian
(from equation 3) is from the real migration result.

Subsurface-offset Hessian

Valenciano et al. (2006) define the zero subsurface-offset domain Hessian by using the adjoint
of the zero subsurface-offset domain migration as the modeling operator L. Then the zero-
subsurface-offset inverse image can be estimated as the solution of a non-stationary least-
squares filtering problem, using an iterative inversion algorithm (Valenciano et al., 2006).

The subsurface-offset Hessian was defined by Valenciano and Biondi (2006). The defini-
tion can be summarized as follows.

The prestack migration image (subsurface-offset domain) for a group of shots positioned
at xs = (xs , ys, 0) and a group of receivers positioned at xr = (xr , yr , 0) can be given by the
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adjoint of a linear operator L acting on the data-space d(xs ,xr ;ω) as

m(x,h) = L′d(xs ,xr ;ω)
=

∑

ω

∑

xs

∑

xr

f(ω)G′(x−h,xs;ω)G′(x+h,xr ;ω)
∑′

h

∑′

x
d(xs ,xr ;ω), (4)

where G(x,xs ;ω) and G(x,xr ;ω) are respectively the Green’s functions from the shot position
xs and from the receiver position xr to a point in the model space x, f(ω) is the source wavelet,
and h = (hx ,h y) is the subsurface-offset. The symbols

∑′

h
and

∑′

x
are spray operators

(adjoint of the sum) in the subsurface-offset and physical space dimensions x = (x , y, z), re-
spectively. The Green’s functions are computed by means of the one-way wave-equation.

The synthetic data can be modeled (as the adjoint of equation 4) by the linear operator L
acting on the model space m(x,h)

d(xs ,xr ;ω) = Lm(x,h)
=

∑

x

∑

h
G(x+h,xr ;ω)f(ω)G(x−h,xs;ω)

∑′

xr

∑′

xs

∑′

ω

m(x,h), (5)

where the symbols
∑′

xr
,
∑′

xs
, and

∑′

ω

are spray operators in the shot, receiver, and
frequency dimensions, respectively.

The second derivative of the quadratic cost function with respect to the model parameters
is the subsurface-offset Hessian:

H(x,h;x′,h′) =
∑

ω

f(ω)2
∑

xs

G′(x−h,xs;ω)G(x′ −h′,xs ;ω)

×
∑

xr

G′(x+h,xr ;ω)G(x′ +h′,xr ;ω), (6)

where (x′,h′) are the off-diagonal terms of the Hessian matrix.

An approximation to the full subsurface-offset Hessian involves computing only the off-
diagonal terms at close to the diagonal (Valenciano and Biondi, 2006).

H(x,h;x+a,h′) =
∑

ω

f(ω)2
∑

xs

G′(x−h,xs;ω)G(x+a−h′,xs ;ω)

×
∑

xr

G′(x+h,xr ;ω)G(x+a+h′,xr ;ω), (7)

where a = (ax ,ay ,az) are the off-diagonal coefficients. The impact of this approximation will
be evaluated in the following sections.

Data fitting goal

In this paper I do not use any regularization to solve the linear system in equation 3, since
the objective of the study was to find out how well the Hessian operator could fit the different
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kind of data. Having regularization could obscure the results. However, in areas of poor
illumination, this problem will have a large null space. The null space is partially caused by
the fact that our survey can not have infinite extents and infinitely dense source and receiver
grids. Any noise that exists within the null space can grow with each iteration until the problem
becomes unstable.

The inversion was carried out in the subsurface-offset domain. The fitting goal used was

H(x,h;x′,h′)m̂(x,h)−mmig(x,h) ≈ 0, (8)

In the next sections I compare the numerical solution of the inversion problems stated in
equation 8 in the imaging of the TRIP synthetic dataset.

TWO-WAY VS. ONE-WAY MODELING

For efficiency reasons the Green’s functions in equations 4, 5, and 6 are computed by means of
a one-way wave-equation extrapolator. No upgoing energy can be modeled by following this
approach, since the evanescent energy is usually damped (Claerbout, 1985). This makes the
one-way propagator act as a dip filter depending on the velocity model (from the dispersion
relation, ω

2

v
2 < k2). Also, the conventional one-way wave-equation does not model accurately

the the amplitude behavior with the angle of propagation (Zhang et al., 2005). Another prob-
lem arises when the velocity varies laterally, then getting energy to accurately propagate close
to 90◦ is a big challenge.

The previous limitations of the one-way modeling can be mitigated by getting sophisti-
cated when implementing the extrapolator. The dip filter effect should be reduced by including
the Jacobian of the change of variable from ω to kz (Sava and Biondi, 2001), thus making L
closer to be unitary. To properly model the amplitude behavior with the angle of propagation,
Zhang et al. (2005) proposed using a modified one-way wave-equation who’s solution match
the Kirchhoff inversion solution. The effect caused by the lateral variation of the velocity can
also be mitigated by using better approximations of the square root operator.

For the example presented in this paper I used the conventional one-way wave equation
(Claerbout, 1985). I did not include the Jacobian, and approximated the square root operator
with Split Step Fourier plus interpolation (PSPI).

NUMERICAL RESULTS

Modeling

The TRIP synthetic dataset was created from a model with a constant-reflectivity flat reflector
lying beneath a Gaussian low velocity anomaly (Figure 1). The data was modeled with the
following acquisition geometry: the shots and receivers were positioned every 10 m on the
interval x = [−2.0,2.0] km .
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Figure 1: Gaussian anomaly velocity model with overlay rays showing the uneven illumination
of the reflector. alejandro1-rays [ER]

The Gaussian anomaly distorts the direction in which the energy is propagated (from small
to high angles) and it also makes the velocity change with x position, thus the effect of using
one-way vs. two-way modeling should be noticeable. One important difference between
these two data sets is the assumed AVA of the flat reflector. I assumed a constant AVA when
modeling the one-way data with equation 5. Conversely, a AVA corresponding to a constant
density is implicit in the TRIP two-way finite-differences modeling code.

Figure 2 shows a comparison of the two-way (Figures 2a, 2c) modeled data provided by
TRIP vs. the one-way (Figures 2b, 2d) modeled using equation 5. The first row correspond to
a shot located at x = −2 km, and the bottom row corresponds to a shot located at x = 1 km.

The main differences (besides the artifact in the two-way modeling with linear moveout)
can be spotted in the top row. The one-way modeled data (Figure 2a) shows a decay of the
amplitude with offset (compare with Figure 2b) that could be related to the errors in the ampli-
tude (absence of the Jacobian) in the one-way extrapolator. There is also an overturning event
arriving at far offset (Figure 2b), which is impossible to model with the one-way extrapola-
tor. Besides the AVO differences (dynamic) a very good agreement of the kinematics can be
observed.
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Figure 2: Comparison of the two-way (b,d) modeled data provided by TRIP vs. the one-way
(a,c) modeled using equation 5. The top row shows the data from a shot located at x = −2 km,
and the bottom row corresponds to a shot located at x = 1 km. alejandro1-compare [CR,M]

Migration

The next step is to compare the subsurface-offset migration results from the two different data
sets. Figure 3 shows a comparison the two-way (3a) vs. the one-way modeled data (3b) mi-
grations in the subsurface-offset domain. The results are comparable in terms of resolution,
but the amplitudes show a different behavior. This is something to expect from the data dif-
ferences in AVO behavior (Figure 2). Even though the images shown in Figure 3 are in the
sub-surface offset domain, we can see how different they are going to be when transformed to
reflection angle by using Sava and Fomel (2003) transformation.

Figure 4 shows a comparison the two-way (Figure 4a) vs. the one-way modeled data
(Figure 4b) migrations in the reflection angle domain. This result is obtained after applying
an offset to angle transformation to the images in Figure 3. Notice the difference between the
illumination patterns in the images. As we discussed in the modeling subsection the images
in Figure 4a and Figure 4b should have different AVA responses. But, from inspecting the
figures we can see that they are not that far apart. For most of the a x positions the angle range
illumination is the same, being different in intensity. I will discuss the impact of this on the
recovery of the AVA in the Inversion subsection.
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Figure 3: Comparison of the migration results in subsurface-offset domain of the two-way (a)
vs. the one-way modeled data (b), and vs. the migration "Hessian impulse response" (c) (from
equation 3) alejandro1-compare_mig1 [CR,M]
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Figure 4: Comparison of the migration results in reflection angle of the two-way (a) vs. the
one-way modeled data (b), and vs. the migration "Hessian impulse response" (c) (from equa-
tion 3) alejandro1-compare_mig2 [CR,M]
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Migration vs. "Hessian impulse response"

Another important comparison is the between the the one-way modeled data migration (Fig-
ures 3b and 4b) and the migration "Hessian impulse response" (Figures 3c and 4c). This two
results should have been identical if all the off-diagonal terms of the Hessian matrix would
have been computed (equation 7) to obtain Figures 3c. In the modeling of the one-way data
all the off-diagonal elements of the Hessian matrix are implicitly computed. To obtain Fig-
ure 3c only (ax = 15 × az = 15 × h ′ = 32) off-diagonal elements of the Hessian matrix were
computed.

The two results are very similar at small offsets, but at far subsurface-offset the migration
"Hessian impulse response" (Figure 3c) amplitudes are washed out. That might indicate the
need of computing more off-diagonal coefficients in the (x , z) dimensions (ax ,az), probably the
same number off subsurface-offsets. The angle migration "Hessian impulse response" differs
at higher angles to the angle one-way modeled data migration, a result that is the consequence
of the washed out amplitudes at far subsurface-offset "Hessian impulse response".

An important feature to notice when comparing Figures 4a, 4b, and 4c is that some places
with low illumination in Figure 4a, have high illumination in Figure 4b, and Figure 4c. In
those places the deconvolution by the one-way wave-equation Hessian will not recover the
correct amplitudes. Thus the AVA signature will be affected.

Inversion

Deconvolution by the one-way wave-equation Hessian can be use to account for the illumi-
nation problem caused by the low velocity Gaussian anomaly (Figure 4). To understand the
effect of using one-way wave-equation Green functions in the Hessian computation, I compare
the inversion of the: two-way modeled data (Figures 5a, and 6a), the one-way modeled data
(Figures 5b, and 6b), and the migration "Hessian impulse response" (Figures 5c, and 6c). The
images in Figure 6 are the result of applying an offset to angle transformation to the images in
Figure 5.

The first thing to notice is that in the case in that the same operator was used for the mod-
eling and for the inversion ("Hessian impulse response", Figures 5c, and 6c) the deconvolution
by the Hessian gives a almost perfect result. See how the energy in the subsurface-offset di-
mension concentrates around zero subsurface-offset (Figure 5c), and by consequence the more
uniform angle coverage (Figure 6c) compare to the migration results in Figures 3c and 4c.

The second best result is obtained for the one-way modeled data inversion (Figures 5b,
and 6b). Here the operators used for the modeling (implicitly) and the operator used for the
inversion (explicitly) differ, since not all the of off-diagonal elements of the Hessian were com-
puted. Nevertheless, there is an improvement in the AVA uniformity (expected from modeling)
in most of the x positions. Especially at the center of the model.

The result of the two-way modeled data inversion (Figures 5a, and 6a) is the one showing
less improvements. Nevertheless, there are several x positions where the AVA looks less
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Figure 5: Comparison of the inversion results in reflection angle of the two-way (a) vs. the one-
way modeled data (b), and vs. the migration "Hessian impulse response" (c) (from equation
3) alejandro1-compare_inv1 [CR,M]
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Figure 6: Comparison of the inversion results in reflection angle of the two-way (a) vs. the one-
way modeled data (b), and vs. the migration "Hessian impulse response" (c) (from equation
3) alejandro1-compare_inv4 [CR,M]
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affected by the velocity anomaly. Especially at the center of the model.

The results indicate that if the modeling and the inversion operators differ there is little
chance to recover the correct AVA in poorly illuminated areas. This is because, in areas of
poor illumination, this problem will have a large null space. The proper strategy appears to be
the use of regularization. Three different regularization schemes for wave-equation inversion
have been discussed in the literature. First, an identity operator (damping) which is custom-
ary in many scientific applications. Second, a geophysical regularization which penalizes the
roughness of the image in the offset ray parameter dimension (which is equivalent the reflec-
tion angle dimension) (Prucha et al., 2000; Kuehl and Sacchi, 2001). Third, a differential
semblance operator to penalize the energy in the image not focused at zero subsurface-offset
(Shen et al., 2003).

CONCLUSIONS

Modeling and migration of a data set with a Gaussian velocity anomaly shows that the main
differences between the two-way vs. one-way modeled data are at far offsets. The one-way
modeled data amplitudes decay with offset, because of the many approximations used (PSPI to
handle variable horizontal velocities) and the absence of the Jacobian of the change of variable
from ω to kz .

An important fact derived from the numerical experiments is that the one-way modeled
data migration vs. migration "Hessian impulse response" show differences. Those differences
are attributed to the computed number of off-diagonal terms of the Hessian matrix. An added
value of this comparison is that it corroborates the approximations used to compute the Hes-
sian.

The results indicate that if the modeling and the inversion operators differ there is little
chance to recover the correct AVA in poor illumination areas. Because, in areas of poor illu-
mination, this problem will have a large null space. The proper strategy to recover the AVA
in those areas is the use of regularization, where previous knowledge about the model can be
introduced to reduce the model null space.
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