next up previous print clean
Next: Solving for the extrapolation Up: REFERENCES Previous: Generalized Riemannian Geometry

One-way Riemannian wavefield extrapolation

The acoustic wave-equation for wavefield, $\mathcal{U}$, in a generalized Riemannian space is  
 \begin{displaymath}
 \nabla^2\mathcal{U}= - \omega^2\ss^2 \left(\mathbf{x} \right)\mathcal{U},\end{displaymath} (19)
where the $\omega$ is frequency, $\ss$ is the propagation slowness, and $\nabla^2$ is the Laplacian operator  
 \begin{displaymath}
 \Delta \mathcal{U}= \frac{1}{\sqrt{\vert\mathbf{g}\vert}}\,...
 ...t(\,m^{ij}\,\frac{\partial \mathcal{U}}{\partial \xi_j}\right).\end{displaymath} (20)
Substituting equation 20 into 19 generates a Helmholtz equation appropriate for propagating waves through a 3D space  
 \begin{displaymath}
\frac{1}{\sqrt{\left\vert \mathbf{g} \right\vert}} \frac{\pa...
 ...tial \W}{\partial \xi_j } \right)= - \omega^2\ss^2 \mathcal{U}.\end{displaymath} (21)
Expanding the derivative terms and multiplying through by $\sqrt{\left\vert \mathbf{g} \right\vert}$yields  
 \begin{displaymath}
\frac{\partial m^{\ii\jj} }{\partial \xi_i } \frac{\partial ...
 ...t{\left\vert \mathbf{g} \right\vert}\omega^2 \ss^2 \mathcal{U}.\end{displaymath} (22)
Defining nj as
\begin{displaymath}
n_j=\frac{\partial m^{\ii\jj} }{\partial \xi_i } = 
\frac{\p...
 ...}}{\partial \xi_2 } +
\frac{\partial m^{3j}}{\partial \xi_3 } ,\end{displaymath} (23)
leads to a more compact notation of equation 22  
 \begin{displaymath}
n_j \frac{\partial \W}{\partial \xi_j } + m^{\ii\jj} \frac{\...
 ...t{\left\vert \mathbf{g} \right\vert}\omega^2 \ss^2 \mathcal{U}.\end{displaymath} (24)
Developing a wave-equation dispersion relation is achieved by replacing the partial differential operators acting on wavefield $\mathcal{U}$ with their Fourier domain duals  
 \begin{displaymath}
\left(m^{ij} k_\xi_i-i n_j \right)k_\xi_j= \sqrt{\left\vert \mathbf{g} \right\vert}\omega^2\ss^2,\end{displaymath} (25)
where $k_\xi_i$ is the Fourier domain dual of differential operator $\frac{\partial}{\partial \xi_i}$. Equation 25 represents the dispersion relationship for wavefield propagation on a generalized 3-D Riemannian space.
next up previous print clean
Next: Solving for the extrapolation Up: REFERENCES Previous: Generalized Riemannian Geometry
Stanford Exploration Project
1/16/2007