next up previous print clean
Next: Derivation of equation (30) Up: Derivation of the derivative Previous: Derivation of equation (26)

29)

Derivation of equation (

In case of uniform scaling of velocity,
\begin{eqnarray}
\frac{\partial z_{\tilde{\gamma}}}{\partial \rho_V}
=
-\frac{z_...
 ...-\gamma)}
\frac{\partial S_r}{\partial \rho_{i}}
\right),\nonumber\end{eqnarray}
\begin{eqnarray}
\frac{\partial z_{\tilde{\gamma}}}{\partial \rho_V}
=
-\frac{z_...
 ...\gamma)}
-
\frac{S_r}{S_r\cos(\alpha_x-\gamma)}
\right), \nonumber\end{eqnarray}
   \begin{eqnarray}
\frac{\partial z_{\tilde{\gamma}}}{\partial \rho_V}
=
\frac{z_\...
 ...{\cos(\alpha_x+\gamma)}
+
\frac{1}{\cos(\alpha_x-\gamma)}
\right).\end{eqnarray} (46)
The quantity $\frac{1}{\cos(\alpha_x+\gamma)} +
\frac{1}{\cos(\alpha_x-\gamma)}$ can be written
   \begin{eqnarray}
\frac{1}{\cos(\alpha_x+\gamma)}
+
\frac{1}{\cos(\alpha_x-\gamma...
 ...)}
&=&\frac{2\cos\alpha_x\cos\gamma}{\cos^2\alpha_x-\sin^2\gamma}.\end{eqnarray} (47)
(48)
(49)
(50)
Using equation (50), equation (46) simplifies to
   \begin{eqnarray}
\frac{\partial z_{\tilde{\gamma}}}{\partial \rho_V}
&=&
z_\xi
\...
 ...2\alpha_x-\sin^2\gamma}
\tan \gamma
\tan \widehat{\gamma}
\right).\end{eqnarray} (51)
(52)
(53)


next up previous print clean
Next: Derivation of equation (30) Up: Derivation of the derivative Previous: Derivation of equation (26)
Stanford Exploration Project
4/6/2006