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Application of Least-Squares Joint Imaging of Multiples and
Primaries on Shallow Water-Bottom Data Sets

Madhav Vyas and Morgan Brown

ABSTRACT
Data contaminated with strong shallow water-bottom multiples is rife with challenges.
Application of Least-Squares Joint Imaging of Multiples and Primaries (LSJIMP) on such
data sets yields mixed results. LSJIMP solves both the separation and integration simul-
taneously, as a global least-squares inverse problem. We point out some limitations of
LSJIMP by testing it on synthetic data sets that emulate shallow water-bottom marine en-
vironments. Some slight modifications have been made, and we suggest some strategies
that might make LSJIMP an effective algorithm.

INTRODUCTION

Multiples are often the most significant impediment to the successful construction and inter-
pretation of an image of the primaries, especially in regions with anomalously strong reflectors
(e.g., “hard” water bottom or salt bodies). But, since they penetrate deeply enough into the
earth and illuminate different angular ranges and reflection points, a primary and its multiples
are more than simply redundant.

The problem of handling multiples becomes more challenging when we encounter shallow
water-bottom with a large impedence contrast. In such cases a large amount of multiple energy
is generated, most of which is surface related. Offshore Australia is a prime example of such
a marine environment. An important class of multiple-suppression techniques create from
the data a “model” of the multiples, which may then be adaptively subtracted from the data.
Verschuur and Prein (1999) use Surface-Related Multiple Elimination (SRME) for multiple-
suppression on an Australian data set infected with shallow water bottom multiples. The
multiple-generating boundaries were more or less horizontal or gently dipping. Long et al.
(2005) use SRME to revisit a poor-data-quality area in the northern Carnarvon Basin, offshore
Western Australia, where both short- and long-period multiple energy prohibit imaging of
the underlying geology. In some sense, shallow-water multiple suppression is easier. The
multiples look a lot like primaries, so deconvolution with a gapped filter (gap size = water-
bottom time) will solve the problem nicely. However, some of the more advanced multiple
suppression methods, like high-resolution Radon and SRME, have a trouble with shallow
water-bottom. The Radon transform relies on moveout differences between multiples and
primaries, which are not present in shallow data, except near the surface, and SRME often
requires many non-linear iterations in shallow-water environments.

1



2 LSJIMP SEP–124

Brown (2004) introduces LSJIMP (Least-Squares Joint Imaging of Multiples and Pri-
maries) for using information embedded in primaries and multiples simultaneously to enhance
the signal-to-noise ratio and fill illumination gaps by averaging the images constructed from
primaries and multiples. He has effectively demonstrated the use of his method on a variety
of deep water-bottom data sets.

In this paper, we discuss implementation of LSJIMP on two shallow water-bottom syn-
thetic data sets, for which we get mixed results. Some slight modifications have been made
and we point out some improvements that might make this method perform better.

THEORY

LSJIMP models the recorded data as the superposition of primary reflections and p orders of
pegleg multiples from nsurf multiple-generating surfaces. A schematic for LSJIMP is given in
Figure 1. An i th order pegleg splits into i + 1 legs. If we denote the primaries as d0 and the
k th leg of the i th order pegleg from the m th multiple generator as di ,k,m , the modeled data takes
the following form:

dmod = d0 +

p
∑

i=1

i
∑

k=0

nsurf
∑

m=1
di ,k,m . (1)

If we have designed an imaging operator that produces primary and multiple images with
consistent signal (kinematics and angle-dependent amplitudes), then we assume that we can
model the important events in the data. We can rewrite equation (1) as

dmod = L0m0 +

p
∑

i=1

i
∑

k=0

nsurf
∑

m=1
Li ,k,m mi ,k,m (2)

= Lm (3)

where L0 is the modeling operator of the primaries, and m0 is the image of primaries. Simi-
larly, for the k th leg of the i th order pegleg from the m th multiple generator, Li ,k,m and mi ,k,m
are modeling operator and image respectively.

Brown (2004) derived appropriate imaging and amplitude correction operators to map the
primary image, m0, into data-space primary events using the Normal Move-Out (NMO) op-
erator, N0. Similarly, a given pegleg image, mi ,k,m , is mapped into data space by sequentially
applying the differential geometric spreading correction (Gi ,m), Snell resampling (Si ,m), the
Hetrogeneous-Earth Multiple NMO operator (HEMNO) (Ni ,k,m ), and finally, a reflection coef-
ficient (Ri ,k,m ). HEMNO is a slight improvement over NMO that takes into account kinematics
of mildly dipping reflectors. Using these operators, we can rewrite equation (2) as follows:

dmod = N0m0 +

p
∑

i=1

i
∑

k=0

nsurf
∑

m=1
Ri ,k,m Ni ,k,mSi ,mGi ,mmi ,k,m . (4)
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Figure 1: LSJIMP schematic. Assume that the recorded data consist of primaries and peg-
leg multiples. Prestack imaging alone (applying adjoint of modeling operator Li ,k ) focuses
signal events in zero-offset traveltime (or depth) and offset (or reflection angle), but leaves
behind crosstalk events. If the mi ,k images contain only signal, then we can model all the
events in the data that we desire. The LSJIMP inversion suppresses crosstalk and endeavors
to fit the recorded data in a least-squares sense. The model regularization operators used to
suppress crosstalk simultaneously enable LSJIMP to exploit the intrinsic redundancy between
and within the images to increase signal fidelity. madhav1-schem-LSJIMP-seg [NR]
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The LSJIMP seeks to optimize the primary and multiple images, m, by minimizing the `2
norm of the data residual, defined as the difference between the recorded data, d, and the
modeled data, dmod [equation (3)]:

min
m ‖d−Lm‖2. (5)

Minimization (5) is under-determined for many choices of prestack imaging operator, which
implies an infinite number of least-squares-optimal solutions. The problem of infinite optimal
solutions manifests itself as crosstalk leakage. Of this infinity of possible m’s, we seek the
one which not only fits the recorded data, but which also has minimum crosstalk leakage and
maximum consistency between signal events on different images. In general we compensate
for a correlated or poorly scaled data residual by adding a residual weighting operator, Wd:

min
m ‖Wd [d−Lm]‖2, (6)

where strictly speaking,
(

Wd
T Wd

)−1
= cov[d]. (7)

To effect the final step of LSJIMP and penalize crosstalk, we use three regularization operators.
As discussed in detail by Brown (2004), the operators penalize roughness in reflection angle
and between images, and also penalize the model after weighting with a prior model of the
crosstalk on each mi ,k,m . For estimation of the optimal set of mi ,k,m , we minimize a quadratic
objective function which consists of the sum of the weighted `2 norms of the data residual
[equation(6)] and of the three model residuals:

min
m Q(m) = ‖Wd [Lm−d]‖2 + ε

2
1‖r[1]

m ‖2 + ε
2
2‖r[2]

m ‖2 + ε
2
3‖r[3]

m ‖2, (8)

where ε1,ε2, and ε3 are scalars that balance the relative weight of the three model residuals
(damping factors) with the data residual. These three residuals are calculated by differencing
across images, differencing across offset, generating a crosstalk model, and calculating their
penalty weights.

IMPLEMENTATION OF LSJIMP

In this section we discuss implementation of LSJIMP on two synthetic shallow water-bottom
data sets SYN-1 and HASK.

SYN-1

A synthetic data set, which we call SYN-1, was generated to simulate very shallow and hard
water-bottom marine environment. The model has four horizontal layers. The depth of the
water bottom is about 150 m. The data-set, shown in Figure 2, is contaminated with first-
and higher-order water-bottom peglegs. Brown (2004) discusses kinematic imaging of pegleg
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Figure 2: Synthetic data-set (SYN-1) infected with shallow water bottom multiples.
madhav1-data [ER]
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multiples and applies NMO correction for a j th order pegleg using the following equation:

t =

√

(τ + jτ ∗)2 +
x2

V 2
eff

, (9)

where τ and τ
∗ are the zero-offset travel-time and travel-time depth of the multiple generating

surface respectively and Veff is the effective velocity, which is given by

V 2
eff =

(

jτ ∗V 2
rms(τ ∗)+ τ V 2

rms(τ )
)

τ + jτ ∗
. (10)

We use these kinematic equations in our NMO operator to construct images from primaries as
well as from multiples. When we apply the NMO operator with Vrms as the velocity function,
primaries get perfectly corrected for the moveout, but multiples have a residual moveout, and
they appear as crosstalk. The same holds true for primaries and higher-order multiples when
we correct with a Veff appropriate for first-order multiples. Thus, in each image we should
ideally be able to distinguish the components (primaries or different order of multiples) we
correct for the moveout from others. These equations work fine for most cases, but for SYN-1
we actually evaluate a limiting case of these equations. In this case, the travel-time depth of
the water bottom is very small, so for deeper layers we have

τ
∗ � τ . (11)

Using this in equations (9) and (10), we get

t =⇒

√

τ 2 +
x2

V 2
eff

, (12)

Veff =⇒ Vrms . (13)

When we construct the image from primaries, we use Vrms to apply the NMO operator. In this
case where Vrms ≈ Veff, we do not expect water-bottom peglegs to have a residual moveout.
This is precisely the reason why in Figure 3 all the primaries are imaged to their perfect
positions, but the multiples, which we were expecting to appear as crosstalk, look like perfectly
flat reflectors.

Likewise, when we construct images from first- and higher-order multiples, we do not
see any residual moveout for primaries and other multiples, except for shallow ones. In an
ideal case, we would have a consistent signal across all the images, but the crosstalk would
be inconsistent, a fact we could use to enhance signal-to-noise ratio and penalize crosstalk.
But for this special case at hand, crosstalk is as consistent as the signal itself. LSJIMP uses
three regularization operators as discussed in equation (8); two of these, differencing across
offset (designed to penalize events with residual moveout) and differencing between images
(designed to penalize inconsistent crosstalk) do not seem to work effectively for SYN-1. More-
over, the crosstalk-modeling operator fails to perfectly model the crosstalk and subsequently
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Figure 3: Images constructed from (a) primary, (b) first- and (c) second-order multiples. A
strong primary crosstalk is present on images constructed from first- and second-order multi-
ples, moreover, its difficult to distinguish between signal and crosstalk on the basis of residual
moveout. madhav1-syn1i [ER]
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penalize the multiple energy. In Figure 3 we can observe, a very strong primary crosstalk in
images constructed from first- and second-order multiples.

Thus, the application of LSJIMP to such a data set can indeed image the primaries but
cannot eliminate water-bottom peglegs completely, as shown in Figure 4. Since most of the
multiple energy present here is in water-bottom peglegs, we can use some simple tricks like
predictive deconvolution to suppress this energy. We can also try to model the crosstalk by
shifting the dataset by the travel-time depth of water bottom. The results for this exercise are
given in Figure 5, though our results have improved a lot, we still have not been able to get rid
of all the multiple energy in the shallow part(first-order water-bottom multiple). The primary
reason is that most of the zone is muted, and we have few data points in that time range to
perfectly model crosstalk.

The first regularizaton operator, r[1]
m in equation 8, was a result of differencing between

images of model panels generated by primaries and different orders of multiples. Ideally
the difference between two of them should be small where signal is present and large where
crosstalk dominates. Application of such a scheme ensures some degree of smoothness and
consistency across images. LSJIMP computes the difference across two consecutive images,
for instance between m0 and m101, m101 and m111 and likewise. Another possible alternative
is to compute the difference between a multiple image and the primary image, as that would
make all other images consistent with the primary, where we have maximum signal-to-noise
ratio. We implemented this approach, but the results as given in Figure 6 are not pleasing. The
images we obtained have lots of ringing. One of the main reasons for this was the presence of
strong primary crosstalk across all the panels which appears as a spurious event on the primary
image after regularization.

Hask Data Set

The "Hask" data set refers to Haskell-Thompson synthetic modeling. The dataset was modeled
to resemble a North Sea data set donated by Mobil. We successfully apply LSJIMP to the Hask
data set given in Figure 7 for imaging and suppressing the multiple energy. In Figure 8, we
compare the raw data to the data generated by applying a forward modeling operator to our
image, notice that much of the multiple energy is removed. Next, we compare our present
result with results presented by Brown (2002) in Figure 9. It can be observed that now we are
doing a better job of multiple suppression in shallow parts. The primary reason being inclusion
of crosstalk modeling operator in LSJIMP. The method used by Brown (2002) is equivalent
to current method , with ε for crosstalk in equation (8) set equal to zero. To improve our
performance on the Hask data set, we then took advantage of the fact that hask is also a
shallow water-bottom data set and used the improved crosstalk-modeling strategy discussed in
the previous section. Unfortunately, the results as given in Figure 10 do not seem to improve
a lot.

We also tried a non-linear scheme (Brown, 2004) for updating reflection coefficients be-
tween two runs of LSJIMP. The presence of correlated events in the data residual (rd) hints at
the likelihood for further improvements in estimates of the reflection coefficients. The main
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Figure 4: Comparing (a) raw data (SYN-1) and (b) data generated by applying forward-
modeling operator on primary image generated by LSJIMP madhav1-syn1c1 [ER]
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Figure 5: Comparing (a) raw data (SYN-1) and (b) data generated by applying forward-
modeling operator on primary image generated by LSJIMP, and (c) LSJIMP with the modi-
fied crosstalk model. Notice the improvement in multiple suppression with modified LSJIMP.
madhav1-syn1c2 [ER]
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Figure 6: Illustrating (a) primary image and (b) first-order multiple image with a revised
regularization scheme. Notice the amount of ringing, and spurious events in primary image.
madhav1-regmod [ER]
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Figure 7: Hask Data Set madhav1-hdata [ER]

idea of the updating scheme is to compute a scalar update to the reflection coefficient of the
mth multiple generator, 1αm , such that

‖rd −1αm di ,k,m‖2 (14)

is minimized. We could not see any noticable difference with non-linear updates, as demon-
strated in Figure 10.

CONCLUSIONS AND FUTURE WORK

In this paper we discussed application of LSJIMP on shallow water-bottom data-sets. At first,
results did not look promising, but they motivated us to probe into fine details of the method
and to come up with improvements that would make it work better. Crosstalk models and
regularization operators proposed under LSJIMP seem to break down for extremely shallow
water-bottom data sets like SYN-1, as shown through equations (12) and (13). Discriminating
between signal and crosstalk on the basis of moveout did not work very well for this case. We
also proposed and tested a new scheme for generating crosstalk, which seems to be a slight
improvement over the previous one.

As was evident in Figure 3, we were not able to suppress primary crosstalk effectively
on multiple images. Derivative between images could suppress it but its convergence was
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Figure 8: Comparison of (a) raw data and (b) results from first run of LSJIMP.
madhav1-hask1 [ER]
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Figure 9: Comparison of (a) raw data, (b) results presented in SEP-111 and (c) present results.
Notice that a lot of multiple energy in the shallow parts is eliminated in our present results.
madhav1-hask-comp [ER]



SEP–124 Vyas and Brown 15

Figure 10: Comparison of results from (a) LSJIMP, (b) LSJIMP(modified) and (c) LSJIMP
after non-linear update. madhav1-hask2 [ER]
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really slow and our new proposed scheme for difference did not work. Possible reason for
slow convergence might be presence of bad eigen value spectrum, that results in appearence
of smooth components at the very end. Preconditioning might handle the problem of slow
convergence.

There lies a lot of potential in designing appropriate weighting functions and crosstalk-
modeling operators that can make the method of Least-Squares Joint Imaging more effective.
We would also like to see how our method works if, instead of the NMO operator, we use a
migration operator for imaging. This might yield better results.
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