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Mesh generation using differential methods

Jeff Shragge

ABSTRACT
This paper examines a differential gridding method for generating computational meshes
appropriate for solving partial differential equations. Differential methods pose mesh gen-
eration as an elliptical boundary value problem within a framework of differential geom-
etry. Generalized Laplacian operators are used to propagate the known coordinate values
on the boundary points into the interior in a smooth manner. The methodology allows for
the specification of monitor functions that provide mesh regularization and prevent grid
clustering. Examples are provided for two seismic imaging applications: wave-equation
Green’s function generation and wave-equation migration from topography. In both cases,
the resulting regularized meshes have minimal convexity and are conformal to the the pre-
scribed boundaries.

INTRODUCTION

Geophysical methodology often requires computing numerical solutions of partial differential
equations (PDEs). In many cases, computational efficiency and/or accuracy can be enhanced
by posing the physical equations on generalized coordinate meshes rather than Cartesian grids.
By following this approach, though, mesh generation becomes a necessary solution process
step. An important consideration is ensuring that the developed mesh has no attributes that
would cause numerical instability (e.g. grid clustering). This is not a straightforward task
because mesh generation is controlled by non-linear geometric coupling. Hence, localized
mesh regularization can be difficult to implement and developing new gridding techniques
with built-in regularization remains an open and important topic.

Meshing techniques are less advanced in the geophysical community relative to other sci-
entific disciplines (e.g. computer graphics and fluid flow). However, a number of different
grid generation approaches have been reported. Alkhalifah (2003) performs anisotropic ve-
locity analysis on structured, non-orthogonal τ -coordinate meshes based on two-way travel
times. Sava and Fomel (2005) developed Riemannian wavefield extrapolation that general-
izes one-way wave-propagation to structured semi-orthogonal ray-based meshes. Shragge and
Sava (2005) examine wave-equation migration from topography in acquisition coordinates us-
ing structured locally orthogonal meshes. Rüger and Hale (2006) use a non-structured gridding
technique based on tesselation to break subsurface velocity models into logical units.

An important set of structured meshing techniques used in other scientific fields are based
on differential methods (Liseikin, 2004). These approaches pose mesh generation as solv-
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ing an elliptic boundary value problem (BVP) within a framework of differential geometry.
Numerical solution of these generalized Laplacian systems is facilitated by recasting the ellip-
tic problem into a set of parabolic equations for which well-developed and efficient solution
techniques exist. The steady-state solutions of the parabolic equations are structured non-
orthogonal meshes. Importantly, the gridding equations can be manipulated to ensure that
meshes exhibit appropriate attributes for numerical solution of PDEs: i) piece-wise smooth-
ness of interior cells; ii) non-propagation of boundary singularities; and iii) non-overlapping
neighboring cells. In addition, problematic grid clustering can be controlled by introducing
monitor functions that force the mesh to conform locally to minimum geometric standards.

In this paper, I generate structured non-orthogonal meshes appropriate for generalized
Riemannian wavefield extrapolation (Shragge, 2006) using a differential method advocated by
Liseikin (2004). The goal of this paper is not to simply re-develop Liseikin’s method. Rather,
it is to demonstrate its relevance to geophysical meshing problems by summarizing the general
motivation behind the method and highlighting the essential theory and advocated numerical
solution. I begin the paper by reviewing why differential methods form an elliptical BVP and
describing how to pose the gridding problem within a N-D differential geometric framework.
I then present gridding equations for 2-D geometry and provide meshing examples for two
seismic imaging applications: wave-equation generation of Green’s function estimates and
wave-equation migration from topography. The attached appendix provides the numerical
details required to implement the differential meshing technique.

THEORETICAL OVERVIEW

The goal of most grid generation methods is to find the transformation from a regular compu-
tational mesh defined by {ξ i} on a domain 4n to an irregular grid defined by {xk} on domain
Xn+l . Usually, the only a priori information is the location of the mesh boundary points (i.e.
φi (x j ) on ∂4N ). Hence, grid generation is a two-fold task: propagate the boundary values
into the interior in a physically consistent manner, and generate meshes with appropriate at-
tributes (e.g. well-formed, smooth and non-singular). Thus, two important questions are by
what physical principles are the boundary values propagated into the interior? And by what
manner is the mesh regularized to ensure that it has acceptable attributes?

An answer to the first query is found by recasting grid generation as a Dirchelet BVP:
given the boundary values of the mesh, solve an elliptic Laplace’s equation on the mesh’s
interior. Mathematically, this requires solving the following system of equations,

Dξ [s j ] = 0, 0[ξ i ] = ξ i ∣
∣

∂S = φi [s j ], i , j = 1,n (1)

where Dξ [v] is a generalized Laplacian operator acting on field v in coordinates {ξ i}, and
0 is a projection operator that maps boundary values φ i [s j ] of intermediate domain Sn onto
the boundaries of initial domain 4n . More specifically, a BVP is formed for each coordinate
component {s j }, which requires finding N solutions. Generally, this is an iterative process that
continues until the coordinate fields in {s j } converge to those of {x j } to within some level of
tolerance.
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Division of the coordinate fields into independent BVPs, though, does not permit mesh
regularization because coordinate fields are subject to geometric coupling. Because we wish to
generate meshes over generalized spaces, we must represent this coupling through differential
geometry. Importantly, this provides us with a powerful set of tools for mesh generation
because it: i) specifies a metric (literally!) for evaluating mesh characteristics (e.g. extent and
orientation of grid clustering); and ii) permits the introduction of monitor metrics that enable
local mesh regularization. These two topics are discussed in the following two sections.

Differential N-D Mesh Generation

Generalized Laplacian systems can be solved by many different ways; however, numerical so-
lution often is facilitated through intermediate mappings to meshes exhibiting many attributes
of the final grid. This consists of a composite of a transformation - s i (ξ j ) - from a Carte-
sian {ξ j } to an intermediate basis {s i }, and a transformation - xk(s j ) - from {s i } to the final
coordinate mesh {xk}. Notationally, the composite mapping transforms for the N-D problem
are,

s j (ξ i ) : 4n → Sn, ξ i = {ξ 1,ξ 2, ...,ξ n}, s j = {s1,s2, ...,sn},
xk(s j ) : Sn → Xn+l , s j = {s1,s2, ...,sn}, xk = {x1, x2, ..., xn+l}, (2)

Note that coordinate system {xk} may be of a greater dimension than {s j }, which allows for
composite mapping operations of xk [

s j (ξ i)] : 4n → Xn+k that project a 2-D surface into
3-D space (see figure 1 for an example).

Coordinate system transformations - s j (ξ i ) and xk(s j ) - are described in differential ge-
ometry through metric tensor, gi j , which relates the geometry of a coordinate system {s j } to
that of {ξ i} (Guggenheimer, 1977). The metric tensor is symmetric (i.e. gi j = gj i ) and has
elements given by,

gξ

i j =
∂sk

∂ξi

∂sk

∂ξj
and gs

i j =
∂xk

∂si

∂xk

∂sj
, (3)

where the metric tensor superscript specifies the coordinate system in which the operator is
defined. (Note that summation notation - gi i = g11 + g22 + g33 - is implicit for any repeated
indicies found in the paper.) The associated metric tensor g i j is related to the metric tensor
through gi j = gi j/|gs| where gs is the metric tensor determinant. Through use of this differen-
tial geometric framework, the governing set of differential gridding equations (Liseikin, 2004)
become,

Dξ [s j ] =
1

√gs

∂

∂ξi

(

√gs g j k
s

∂s j

∂ξk

)

= 0 i , j ,k = 1,n, (4)

0
[

ξ i] ≡ ξ i ∣
∣

∂Sn = φi [s j ] , i , j = 1,n. (5)

Equations 4 represent the N generalized Laplace’s equations acting on coordinate fields {s j },
and equations 5 map the boundary values of each coordinate field φ i [s j ] to the boundary of
domain 4n. As posed, equations 4 and 5 provide no guarantee that generated grids will exhibit
appropriate characteristics because no mesh regularization has yet been enforced.
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Figure 1: Meshing example for mapping a 2-D Cartesian domain to a surface in a 3-D vol-
ume. Top panel: Regular Cartesian mesh {ξ 1,ξ 2}; Middle panel: Intermediate transforma-
tion domain {s1,s2}; and Bottom panel: Surface in middle panel projected onto 3-D surface
{x1, x2, x3} where increasing grey scale intensity represents increasing height. jeff2-Example
[NR]
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Regularization through Monitor Functions

Monitor functions are a useful tool for regularizing meshes because they can establish a metric
of minimal quality that prevents problematic grid clustering. (A simple scalar analog is pre-
venting division by zero by adding a small number to the denominator.) Monitor functions can
be introduced into equations 4 and 5 by adding additional components to the metric tensor,

gs
i j = z(s) gxs

i j +vk(s) f k(s) i , j = 1,n, k = 1, l, (6)

where gs
i j is the regularized metric tensor, gxs

i j is the unregularized metric tensor calculated
by equations 3, f k(s) are functions of coordinate {s i } that provide metric stabilization, and
z(s) and vk(s) are weighting functions. Hence, where gxs

i j tends to zero, functions f k(s) are
set to non-zero values. Note that the functions and their corresponding weights are specified
on a point-by-point basis allowing for localized mesh regularization, and that the functions
should have zero values and derivatives on the boundary so as to not regularize the boundary
geometry.

Incorporating monitor functions into the Laplacian equation framework requires altering
equations 4. Accordingly, the N-D differential method gridding equations incorporating mon-
itor functions are given by,

Dξ [s j ] = −Dξ [ f k]
∂ f k

∂s j , i , j = 1,n, k = 1, l, (7)

0
[

ξ i] ≡ ξ i ∣
∣

∂Sn = φi [s] , i = 1,n, (8)

where Dξ is specified in equation 4 above. Liseikin (2004) provides theoretical justification
of a number of different approaches to control grid clustering through the manipulation of
monitor functions. In this paper, I use a fairly basic approach where the monitoring function
is specified by a scaled spatially variant metric determinant.

DIFFERENTIAL 2-D MESH GENERATION

Generating a 2-D coordinate system through differential methods requires solving for coor-
dinates {x1, x2} within domain X 2. Incorporating l monitor functions for grid regularization
expands the dimensionality of the mapping to,

x(s) : S2 → X2+l , x(s) = {s1,s2, f 1(s), ..., f l (s)}. (9)

Coordinate system {s j } is related to an underlying Cartesian grid, which is chosen to be a unit
square defined by 42 = {0 ≤ ξ 1,ξ 2 ≤ 1}. Transformation s j (ξ i ) is assumed to be piece-wise
smooth and known on the boundary of 42 such that: φ(ξ ) : ∂42 → ∂S2, φ = (φ1,φ2).
Within this framework, the 2-D gridding equations become,

Dξ [s j ] = −Dξ [ f k]
∂ f k

∂s j , s(ξ )|∂42 = φ(ξ ), j = 1,2, k = 1, l, (10)
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where Laplacian operator Dξ [·] and metric tensor gi j are written explicitly (Liseikin, 2004),

Dξ [v] = gξ

22
∂2v

∂ξ1∂ξ1 −2 gξ

12
∂2v
∂ξ1 ∂ξ 2 + gξ

11
∂2v

∂ξ2∂ξ2 , (11)

gξ
i j = ∂sk

∂ξ i
∂sk

∂ξ j + ∂ f m [s(ξ )]
∂ξ i

∂ f m [s(ξ )]
∂ξ j , i , j ,k = 1,2, m = 1, l. (12)

One convenient way to solve the set of elliptical equations 10 is by transforming them to
a set of parabolic equations (i.e. include time-dependence) that have a common steady-state
solution. Thus, equations 10 are reformulated to include time-dependence - {s i (ξ 1,ξ 2, t)} -
leading to the six governing equations,

∂s1

∂t
= D[s1]+ D[ f k]

∂ f k

∂s1 , k = 1, l (13)

∂s2

∂t
= D[s2]+ D[ f k]

∂ f k

∂s2 , k = 1, l (14)

s1(ξ 1,ξ 2, t) = φ1(ξ 1,ξ 2), t ≥ 0 (15)
s2(ξ 1,ξ 2, t) = φ2(ξ 1,ξ 2), t ≥ 0 (16)
s1(ξ 1,ξ 2, 0) = s1

0 (ξ 1,ξ 2), t = 0 (17)
s2(ξ 1,ξ 2, 0) = s2

0 (ξ 1,ξ 2), t = 0 (18)

Solutions s1(ξ 1,ξ 2, t) and s2(ξ 1,ξ 2, t) satisfying equations 13-18 will converge to the solutions
{x1, x2} of equations 10 as t → ∞. Hence, the answer to within tolerance factor ε occurs at
some Tn. Details of an iterative scheme and an algorithm for computation to solve equations 13
are provided in Appendix A.

NUMERICAL EXAMPLES

Wave-equation generated Green’s Functions

Generating high-quality source Green’s function estimates is an important component of seis-
mic imaging. Because wave-equation methods naturally handle wavefield triplication, Green’s
functions developed using corresponding operators should normally be superior to those gen-
erated by other methods. However, implementing the approximations required to handle prop-
agation through laterally variant velocity profiles often can lead to inferior Green’s function
estimates. These errors become increasingly more apparent, both kinematically and dynam-
ically, as wavefield propagation directions become increasingly oblique to the extrapolation
axis.

One solution is to pose wavefield extrapolation in a ray-based coordinate system defined
by an extrapolation axis oriented along the axis of increasing travel time and additional coor-
dinates represented by shooting angles (Sava and Fomel, 2005). However, grids thus specified
exhibit attributes that depend intrinsically on the chosen ray-tracing method. For example,
ray-coordinate systems generated by Huygen’s ray-tracing (Sava and Fomel, 2001) may tripli-
cate and cause numerical instability during wavefield extrapolation. Hence, care must be taken
to ensure that ray-coordinate systems have the appropriate attributes.
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One method for calculating singular-valued travel times is with a fast-marching Eikonal
equation solver, which provides a travel-time map to each subsurface model location for a
given shot point. A travel-time map example is shown in the upper left panel of figure 2 for a
velocity slice of the SEG-EAGE salt data set. A ray-based coordinate system can be formed
by choosing two isochrons that represent the initial and maximal extrapolation times. The
coordinate system is fully defined by connecting the two isochrons with the extremal rays.
Blending functions can then be used to specify an intermediate geometry {s1,s2}. (see upper
right panel of figure 2).

Coordinate systems generated with this approach, though, are not guaranteed to be smooth
and generally will require mesh regularization. The bottom right panel shows the output of
the differential grid generation algorithm {x1, x2} after 20 smoothing iterations. Note that
kinks visible in the upper right panel have disappeared leaving a significantly smoother mesh.
A qualitatively test of coordinate system smoothness is to examine the smoothness of the
underlying velocity model in the transform domain. The salt body example (lower left panel)
indicates that the velocity model is fairly smooth and should not create significant problems
for generalized coordinate wavefield extrapolation.

Wave-equation Migration from Topography

Seismic data acquired on topography usually require significant preprocessing before any
imaging technique can be applied successfully. Performing wave-equation migration, though,
usually requires that data exist on regularly sampled meshes before a wavefield extrapolation
procedure can begin. Usually, this involves a data regularization step implemented as either
pre-migration datuming or through a wavefield injection plus interpolation migration strategy.

An alternative to these standard approaches is discussed in Shragge and Sava (2005), who
pose seismic imaging directly in acquisition coordinates and use Riemannian wavefield ex-
trapolation to propagate wavefields. Initially, a conformal mapping approach was used to
generate structured, locally orthogonal coordinate meshes (see top panel of figure 3). How-
ever, the ensuing grid clustering and rarefaction demanded by orthogonality led to significant
spatial variance in metric tensor coefficients. Importantly, this variance caused artifacts in the
resulting image, which remains the main drawback of this migration approach.

The extension of RWE to non-orthogonal coordinate systems (Shragge, 2006) allows for
greater flexibility in coordinate system design. The middle panel in figure 3 represents a
blended coordinate system {s1,s2} that forms the input to the differential mesh algorithm.
Lines predominantly in the horizontal direction mimic topography in the near-surface and
slowly heal to form an evenly sampled wavefield at depth. The bottom panel shows the coor-
dinate system output {x1, x2} from the gridding algorithm after 15 iterations. Grid irregularities
now heal more rapidly and the mesh becomes very regular after a few extrapolation steps into
the subsurface.
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Figure 2: Wave-equation generated Green’s functions example. Top left: Travel-time map
generated by fast marching eikonal (FMEikonal) equation solver for a slice of the SEG-EAGE
salt model overlain by 0.2 s time contours. Top right: A blended coordinate system developed
using time contours as the interior and exterior surfaces. This allows for the the coordinate
system to be fairly conformal with the orientation of the propagating wavefield. Bottom right:
Coordinate mesh output from the differential mesh algorithm after 20 iterations. Note that the
kinks in the model have been significantly reduced. Bottom left: Underlying velocity model
mapped into the ray-coordinate shown in bottom right. jeff2-Shotpoint [ER]
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Figure 3: Meshing example for the wave-equation migration from topography application.
Top panel: Locally orthogonal coordinate system calculated by conformal mapping (Shragge
and Sava, 2005). Note the severe amount of grid clustering indicating a need for mesh-
ing regularization. Middle panel: Blended coordinate system {s1,s2} forming the differen-
tial gridding algorithm input. Bottom panel: Regularized mesh {x1, x2} after 15 iterations.
jeff2-Topography [ER]
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CONCLUDING REMARKS

Coordinate systems generated using the approach advocated by Liseikin (2004) offer signifi-
cant improvements in overall mesh smoothness. Accordingly, they should be good underlying
meshes on which to numerical compute PDE solutions. Importantly, because the numerical
solution process splits into finite differences along single coordinate directions, this approach
easily extends to 3-D meshing or projecting 2-D surfaces into 3-D volumes. The results for
this paper were generated using fairly basic monitor functions. Further work is required to
better understand how other choices would potentially impact geophysical meshing solutions.
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APPENDIX A

This appendix details a numerical scheme for solving the differential gridding equations dis-
cussed in Liseikin (2004). The set of parabolic equations to solve are,

∂s1

∂t
= Dξ [s1]+ Dξ [ f k]

∂ f k

∂s1 , k = 1, l (A-1)

∂s2

∂t
= Dξ [s2]+ Dξ [ f k]

∂ f k

∂s2 , k = 1, l (A-2)

s1(ξ 1,ξ 2, t) = φ1(ξ 1,ξ 2), t ≥ 0 (A-3)
s2(ξ 1,ξ 2, t) = φ2(ξ 1,ξ 2), t ≥ 0 (A-4)
s1(ξ 1,ξ 2, 0) = s1

0 (ξ 1,ξ 2), t = 0 (A-5)
s2(ξ 1,ξ 2, 0) = s2

0 (ξ 1,ξ 2), t = 0 (A-6)

where,

Dξ [v] = gξ

22
∂2v

∂ξ1∂ξ1 −2 gξ

12
∂2v
∂ξ1 ∂ξ 2 + gξ

11
∂2v

∂ξ2∂ξ2 , (A-7)

gξ

i j = ∂sk

∂ξ i
∂sk

∂ξ j + ∂ f m [s(ξ )]
∂ξ i

∂ f m [s(ξ )]
∂ξ j , i , j ,k = 1,2, m = 1, l. (A-8)

Computational domain 42 is the unit square divided into N intervals equally spaced in the
{ξ 1,ξ 2} directions. The first transformation 42 → S2 interrelates the known coordinate values
on boundaries of domains S2 and 42,

8(ξ j ) =
[

φ1(ξ j ),φ2(ξ j )
]

, j = 1,2. (A-9)

The interior points of S2 are generated using blending functions, αi
i j (s), 0 ≤ s ≤ 1, where αu

i j
is linear function defined by,

αi
0 j (s) = 1− s, αi

1 j = s. (A-10)

Blended coordinates {s1,s2} are generated on S2 with,

s1(ξ 1,ξ 2, 0) = F1(ξ 1,ξ 2)+ (1− ξ 2)
[

φ1(ξ 1, 0)− F1(ξ 1, 0)
]

+ ξ 2 [

φ1(ξ 1, 1)− F1(ξ 1, 1)
]

,
s2(ξ 1,ξ 2, 0) = F2(ξ 1,ξ 2)+ (1− ξ 2)

[

φ2(ξ 1, 0)− F2(ξ 1, 0)
]

+ ξ 2 [

φi (ξ 1, 1)− F2(ξ 1, 1)
]

,(A-11)

where,

F i (ξ 1,ξ 2) = (1− ξ 1)φi (0,ξ 2)+ ξ 1φi (1,ξ 2). (A-12)

Equations A-1A-6 can be solved using finite difference approximations that march forward
in time. To simplify notation coordinates s1 and s2 are redefined as u = s1 and v = s2. The
finite difference solution is split into a two-stage process along the different coordinate axes.
The first stage calculates solutions u0+ 1

2 and v0+ 1
2 for a step in the u direction at time t = 0+ 1

2
using the values u0 and v0. The second stage calculates solutions u0+1 and v0+1 for a step in
the v direction at time t = 0+1 using intermediate values u0+ 1

2 and v0+ 1
2 .
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Explicitly, the four equations comprising the finite difference scheme for un
i j and vn

i j , 0 ≤
i , j ≤ N , 0 ≤ n on uniform grid (ih, jh,nτ ) are,

un+1/2
i j −un

i j = τ

h2

[

g22(sn
i j ) Li j (un+ 1

2 )−2 g12(sn
i j ) Mi j (un)+ g11(sn

i j ) Si j (un)+Pi j (un)
]

1 ≤ i , j ≤ N −1,n ≥ 0 (A-13)

v
n+1/2
i j −vn

i j = τ

h2

[

g22(sn
i j ) Li j (vn+ 1

2 )−2 g12(sn
i j ) Mi j (vn)+ g11(sn

i j ) Si j (vn)+Qi j (un)
]

1 ≤ i , j ≤ N −1,n ≥ 0 (A-14)

un+1
i j −un+1/2

i j = τ

h2 g11(sn
i j ) Si j (un+1 −un)

1 ≤ i , j ≤ N −1,n ≥ 0 (A-15)

vn+1
i j −v

n+1/2
i j = τ

h2 g11(sn
i j ) Si j (vn+1 −vn)

1 ≤ i , j ≤ N −1,n ≥ 0 (A-16)

where,

g11
(

sn
i j
)

=
( un

i+1 j −un
i−1 j

2h

)2
+

(

vn
i+1 j −vn

i−1 j
2h

)2
+

f
(

sn
i+1 j

)

−f
(

sn
i−1 j

)

2h ·
f
(

sn
i+1 j

)

−f
(

sn
i−1 j

)

2h

1 ≤ i , j ≤ N −1, (A-17)

g12
(

sn
i j
)

=
un

i+1 j −un
i−1 j

2h ·
un

i j+1−un
i j−1

2h +
vn

i+1 j −vn
i−1 j

2h ·
vn

i j+1−vn
i j−1

2h +

+
f
(

sn
i+1 j

)

−f
(

sn
i−1 j

)

2h ·
f
(

sn
i j+1

)

−f
(

sn
i j−1

)

2h
1 ≤ i , j ≤ N −1, (A-18)

g22
(

sn
i j
)

=
(un

i j+1−un
i j−1

2h

)2
+

(

vn
i j+1−vn

i j−1
2h

)2
+

f
(

sn
i j−1

)

−f
(

sn
i j+1

)

2h ·
f
(

sn
i j−1

)

−f
(

sn
i j+1

)

2h

1 ≤ i , j ≤ N −1,
Li j (w) = wi+1 j −2wi j +wi−1 j , 1 ≤ i , j ≤ N −1 (A-19)

Mi j (w) = 1
4
[

wi+1 j+1 −wi−1 j+1 −wi+1 j−1 +wi−1 j−1
]

1 ≤ i , j ≤ N −1 (A-20)

Si j (w) = wi j+1 −2wi j +wi j−1, 1 ≤ i , j ≤ N −1 (A-21)

Pi j
(

sn
i j
)

= bk
i j (sn

i j )
∂ f k

∂s1
k = 1, l 1 ≤ i , j ≤ N −1 (A-22)

Qi j
(

sn
i j
)

= bk
i j (sn

i j )
∂ f k

∂s2
k = 1, l 1 ≤ i , j ≤ N −1 (A-23)

bk
i j

(

sn
i j
)

= g22
(

sn
i j

)

Li j
[

f k (sm)
]

−2 g12
(

sn
i j

)

Mi j
[

f k (sm)
]

+ g11
(

sn
i j

)

Si j
[

f k (sm)
]

k = 1, l 1 ≤ i , j ≤ N −1 (A-24)
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Algorithm for Computation

The solution to the finite difference scheme is obtained through recursive back-substitution.

Equation A-13 - is solved by,

An+ 1
2

i j = g22 (sn
i j ) Cn+ 1

2
i j = 2 g22 (sn

i j )+ θ Bn+ 1
2

i j = g22 (sn
i j )

Fn
i j = θ un

i j −2 g12 (sn
i j ) Mi j (un)+ g11 (sn

i j ) Si j (un) + Pi j (un). (A-25)

The solution for a fixed number j in range 1 ≤ j ≤ N −1 obtained through,

un+1/2
i j = α

n+1/2
i+1 j un+ 1

2
i+1 j +β

n+1/2
i+1 j , i = 1, N −1, un+ 1

2
N j = φ1(1, jh), (A-26)

where,

α
n+1/2
i+1 j =

Bn+ 1
2

i j

Cn+ 1
2

i j −α
n+1/2
i j An+ 1

2
i j

, i = 1, N −1, α
n+ 1

2
0 j = 0

β
n+1/2
i+1 j =

An+ 1
2

i j β
n+1/2
i j + Fn

i j

Cn+ 1
2

i j −α
n+1/2
i j An+ 1

2
i j

i = 1, N −1, β
n+ 1

2
0 j = φ1(0, jh).

Equation A-14 - is solved by,

An+ 1
2

i j = g22 (sn
i j ) Cn+ 1

2
i j = 2 g22 (sn

i j )+ θ Bn+ 1
2

i j = g22 (sn
i j )

Fn
i j = θ vn

i j −2 g12 (sn
i j ) Mi j (vn)+ g11 (sn

i j ) Si j (vn) + Pi j (vn). (A-27)

The solution for a fixed j in range 1 ≤ j ≤ N −1 is obtained through,

v
n+1/2
i j = α

n+1/2
i+1 j v

n+ 1
2

i+1 j +β
n+1/2
i+1 j , i = 1, N −1, v

n+ 1
2

N j = φ2(1, jh), (A-28)

where,

α
n+1/2
i+1 j =

Bn+ 1
2

i j

Cn+ 1
2

i j −α
n+1/2
i j An+ 1

2
i j

, i = 1, N −1, α
n+ 1

2
0 j = 0

β
n+1/2
i+1 j =

An+ 1
2

i j β
n+1/2
i j + Fn

i j

Cn+ 1
2

i j −α
n+1/2
i j An+ 1

2
i j

i = 1, N −1, β
n+ 1

2
0 j = φ2(0, jh)

Equation A-15 - is solved by,

An+ 1
2

i j = g11 (sn
i j ) Cn+ 1

2
i j = 2 g11 (sn

i j )+ θ Bn+ 1
2

i j = g11 (sn
i j )

Fn+ 1
2

i j = θ un+1/2
i j − g11 (sn

i j ) Si j (un). (A-29)
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The solution for a fixed i in the range 1 ≤ i ≤ N −1 is obtained through,

un+1
i j = αn+1

i j+1 un+1
i j+1 +βn+1

i j+1, i = 1, N −1, un+1
i N = φ1(ih, 1), (A-30)

where,

αn+1
i+1 j =

Bn+1
i j

Cn+1
i j −αn+1

i j An+1
i j

, j = 1, N −1, αn+1
i0 = 0

βn+1
i+1 j =

An+1
i j βn+1

i j + Fn+ 1
2

i j

Cn+1
i j −αn+1

i j An+1
i j

j = 1, N −1, βn+1
i0 = φ1(ih, 0)

Equation A-16 - is solved by,

An+ 1
2

i j = g11 (sn
i j ) Cn+ 1

2
i j = 2 g11 (sn

i j )+ θ Bn+ 1
2

i j = g11 (sn
i j )

Fn+ 1
2

i j = θ v
n+1/2
i j − g11 (sn

i j ) Si j (vn). (A-31)

The solution for a fixed i in the range 1 ≤ j ≤ N −1 is obtained through,

vn+1
i j = αn+1

i j+1 vn+1
i j+1 +βn+1

i j+1, i = 1, N −1, vn+1
i N = φ2(ih, 0), (A-32)

where,

αn+1
i+1 j =

Bn+1
i j

Cn+1
i j −αn+1

i j An+1
i j

, j = 1, N −1, αn+1
i0 = 0

βn+1
i+1 j =

An+1
i j βn+1

i j + Fn+ 1
2

i j

Cn+1
i j −αn+1

i j An+1
i j

j = 1, N −1, βn+1
i0 = φ1(ih, 0).

An approximate solution of the equations A-1 will be found at some large time TN that satis-
fies,

max
0≤i , j ,≤N

1
τ

√

(un+1
i j −un

i j )2 + (vn+1
i j −vn

i j )2 ≤ ε. (A-33)

Step-by-Step Algorithm

The iterative solution method can be broken down into a number of distinct steps: i) define
initial grid using blending functions in equation A-11; ii) compute functions g11(s0

ij), g12(s0
ij),

g22(s0
ij), g(s0

ij), L i j (u0), L i j (v0), Mi j (u0), Mi j (v0), Pi j (s0), Qi j (s0), and bl
i j (s0); iii) compute

u0+1/2
i j by solving equation A-13; iv) compute v

0+1/2
i j by solving equation A-14; v) compute

u0+1
i j by solving equation A-15; vi) compute v0+1

i j by solving equation A-16; vii) perform
tolerance test in equation A-33; and viii) repeat steps 2-7 until tolerance is reached.


