next up previous print clean
Next: Split-Step Fourier Approximation Up: Acoustic wave-equation in 3D Previous: Acoustic wave-equation in 3D

One-way wavefield extrapolation

Developing an expression for the extrapolation wavenumber requires isolating one of the wavenumbers in equation 11 (herein assumed to be coordinate $\xi_3$). Rearranging the results of expanding equation 11 by introducing indicies i,j=1,2,3 yields,
   \begin{eqnarray}
m^{33}k_\xi_3^2 + \left(2m^{13}k_\xi_1+ 2m^{23}k_\xi_2- i\,n_3 ...
 ...right)- m^{11}k_\xi_1^2 -
m^{22}k_\xi_2^2 - 2m^{12}k_\xi_1k_\xi_2.\end{eqnarray}
(12)
An expression for wavenumber $k_\xi_3$ can be obtained by completing the square,
\begin{eqnarray}
\,& m^{33} \left(k_\xi_3+ 
\frac{ \left(2 m^{13}k_\xi_1+ 2m^{23...
 ...m^{23}\,n_3}{ m^{33} }\right)- \frac{n_3^2 }{ m^{33}}.
\,\nonumber\end{eqnarray} (13)
Isolating wavenumber $k_\xi_3$ yields,  
 \begin{displaymath}
k_\xi_3=
- a_1 k_\xi_1
- a_2 k_\xi_2
+ i a_3 
\pm
\left[
 a_...
 ... i\,k_\xi_1
+ a_9 i\,k_\xi_2
- a_{10}^2 
\right]^{\frac{1}{2}},\end{displaymath} (14)
where ai are non-stationary coefficients given by,  
 \begin{displaymath}
\mathbf{a}
=
\left[
\frac{g^{13}}{ g^{33}} \;\;\;\;\;
\frac{...
 ...}\right]\;\;\;\;\;
\frac{ n_3 }{ m^{33} }
\right]^{\mathbf{T}}.\end{displaymath} (15)
Note that the coefficients contain a mixture of mij and gij terms, and that positive definite terms, a4, a5, a6 and a10 in equation 14, are squared such that the familiar Cartesian split-step Fourier correction is recovered below.
next up previous print clean
Next: Split-Step Fourier Approximation Up: Acoustic wave-equation in 3D Previous: Acoustic wave-equation in 3D
Stanford Exploration Project
4/5/2006