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Geomechanical analysis with rigorous error estimates for a
double-porosity reservoir model

James G. Berryman1

ABSTRACT

A model of random polycrystals of porous laminates is introduced to provide a means
for studying geomechanical properties of double-porosityreservoirs having one class of
possible microstructures. Calculations on the resulting earth reservoir model can proceed
semi-analytically for studies of either the poroelastic ortransport coefficients, but the
poroelastic coefficients are emphasized here. Rigorous bounds of the Hashin-Shtrikman
type provide estimates of overall bulk and shear moduli, andthereby also provide rigor-
ous error estimates for geomechanical constants obtained from up-scaling based on a self-
consistent effective medium method. The influence of hidden(or presumed unknown)
microstructure on the final results can then be evaluated quantitatively. Detailed descrip-
tions of the use of the model and some numerical examples showing typical results for
the double-porosity poroelastic coefficients for the type of heterogeneous reservoir being
considered are presented.

INTRODUCTION

Rapid progress in development of rigorous bounding methodsfor material coefficients in het-
erogeneous media (Milton, 2002; Torquato, 2002) has been made over the last fifty years.
Effective medium theory, although very useful in many practical circumstances, nevertheless
has not made such rapid progress. So a question that naturally arises is whether it might be
possible to construct new effective medium formulas directly from the known bounds? Skep-
tics will immediately ask: Why do I need to do this at all if bounds are available? But the
answer to this question is most apparent in poromechanics, where the bounds are frequently
too far apart to be of much use in engineering and, especially, in field applications. Hill (1952)
was actually the first to try constructing estimates from bounds. First he showed that the
Voigt (1928) and Reuss (1929) averages/estimates in elasticity were in fact upper and lower
bounds, respectively, on stiffness. Then he proceeded to suggest that estimates of reasonable
accuracy were given by the arithmetic or geometric means obtained by averaging these two
bounds together. Thus, the Voigt-Reuss-Hill estimates were born. Better bounds than the
Voigt and Reuss bounds are now known and no doubt some attempts to update Hill’s approach
have been made. However, to make a direct connection to traditional approaches of effec-
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tive medium theory, I apply a more technical procedure here in order to obtain estimates of
up-scaled constants using the known analytical structure of the bounds, especially for Hashin-
Shtrikman (1962) bounds. When this mathematical structureis not known — as might be the
case if the bounds are expressed algorithmically rather than as analytical formulas — then I
will see that it proves very worthwhile to expend the additional effort required to determine
this structure. Whenever it is possible to carry the analysis further than has been done in the
published literature, a self-consistent effective mediumformula is fairly straightforward to ob-
tain from the resulting expressions. The self-consistent predictions then lie within the bounds,
as might be desired and expected. In the next section, one particular class of double-porosity
models (Berryman, 2002; Berryman and Pride, 2002) is considered. [Other classes of models
with different microstructures many also be of interest andsome of these have also been dis-
cussed in previous work (Berryman, and Wang, 1995; Berrymanand Pride, 2002), but other
microstructures generally have less analytical structurethat can be exploited, so unfortunately
much less detailed information can be obtained about these models from analysis alone.] Re-
sults from double-porosity geomechanics analysis are presented. These results are general (for
the model under consideration), and do not depend explicitly on generally unknown details of
the spatial arrangement or microstructure of the porous constituents. Microstructure enters
these formulas only through the overall drained bulk modulus K ∗

d . Then, in the following sec-
tion, a preferred model microstructure — that of a locally layered medium — is imposed. This
microstructure has the advantage that it forms hexagonal (or transversely isotropic) “crystals”
locally. Then, if I assume these crystals, or grains, are jumbled together randomly so as to
form an overall isotropic medium, I have the “random polycrystal of porous laminates” reser-
voir model. Hashin-Shtrikman bounds are known for such polycrystals composed of grains
having hexagonal symmetry. So bounds are easily found. Fromthe form of the bounds, I
also obtain estimates of both overall bulk modulus and shearmodulus (Berryman, 2005), thus
completing the semi-analytical poromechanics model. The final two sections show examples,
and summarize my results. Although the language I use here tends to emphasize the analogy
to polycrystals of laminates, the reader should keep in mindthat the equations of elasticity —
and for present purposes (I do not treat permeability here) also the equations of poroelasticity
— are scale invariant. So the mathematics is the same whetherthe layering I are considering
takes place at the scale of microns, meters, or kilometers. However, there is an obvious but
implicit limitation that the scale considered cannot be so small that the continuum hypothesis
fails to be valid.

DOUBLE-POROSITY GEOMECHANICS

The main results used here can be derived using uniform expansion, or self-similar, methods
analogous to ideas used in thermoelasticity by Cribb (1968)and in single-porosity poroelas-
ticity by Berryman and Milton (1991). Cribb’s method provided a simpler and more intuitive
derivation of Levin’s earlier results on thermoelastic expansion coefficients (Levin, 1967). Our
results also provide a simpler derivation of results obtained by Berryman and Pride (2002) for
the double-porosity coefficients. Related methods in otherapplications to micromechanics are
called “the theory of uniform fields” by some authors (Dvorakand Benveniste, 1997). First
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assume two distinct phases at the macroscopic level: a porous matrix phase with the effective
propertiesK (1)

d , G(1)
d , K (1)

m , φ(1) (which are drained bulk and shear moduli, grain or mineral
bulk modulus, and porosity of phase 1 with analogous definitions for phase 2), occupying
volume fractionV (1)/V = v(1) of the total volume and a macroscopic crack or joint phase
occupying the remaining fraction of the volumeV (2)/V = v(2) = 1− v(1). The key feature
distinguishing the two phases — and therefore requiring this analysis — is the very high fluid
permeability of the crack or joint phase and the relatively lower permeability (but higher fluid
volume content) of the matrix phase. In the double-porositymodel, there are three dis-

Figure 1: Schematic of the ran-
dom polycrystals of laminates model.
jim1-laminated_poly_l12[NR]

Figure 2: Blowup showing a detail
that illustrates how each one of the
grains is composed of two very dif-
ferent types of porous materials: one
being a storage material (high poros-
ity and low permeability) and one a
transport material (low porosity and
high permeability). jim1-doublepor
[NR]

tinct pressures: confining pressureδpc, pore-fluid pressureδp(1)
f [for the storage porosity], and

joint-fluid pressureδp(2)
f [for the transport porosity]. (See Figures 1 and 2.) Treating δpc,δp(1)

f ,

andδp(2)
f as the independent variables in our double porosity theory,I define the dependent

variablesδe ≡ δV/V , δζ (1) = (δV (1)
φ − δV (1)

f )/V , andδζ (2) = (δV (2)
φ − δV (2)

f )/V , which are
respectively the total volume dilatation, the increment offluid content in the matrix phase,
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and the increment of fluid content in the joints. The fluid in the matrix is the same as that in
the cracks or joints, but the two fluid regions may be in different states of average stress and,
therefore, need to be distinguished by their respective superscripts. Linear relations among
strain, fluid content, and pressure take the symmetric form





δe
−δζ (1)

−δζ (2)



=





a11 a12 a13

a12 a22 a23

a13 a23 a33











−δpc

−δp(1)
f

−δp(2)
f






, (1)

following Berryman and Wang (1995) and Lewallen and Wang (1998). It is easy to check that
a11 = 1/K ∗

d , whereK ∗
d is the overall drained bulk modulus of the system. I now find analytical

expressions for the remaining five constants for a binary composite system. The components
of the system are themselves porous materials 1 and 2, but each is assumed to be what I call a
“Gassmann material” satisfying

(

δe(1)

−δζ (1)/v(1)

)

=
1

K (1)
d

(

1 −α(1)

−α(1) α(1)/B(1)

)

(

−δp(1)
c

−δp(1)
f

)

(2)

for material 1 and a similar expression for material 2. The new constants appearing on the
right are the drained bulk modulusK (1)

d of material 1, the corresponding Biot-Willis (Biot and
Willis, 1957) coefficientα(1), and the Skempton (1954) coefficientB(1). The volume fraction
v(1) appears here in order to correct for the difference between aglobal fluid content and the
corresponding local variable for material 1. The main special characteristic of a Gassmann
(1951) porous material is that it is composed of only one typeof solid constituent, so it is
“microhomogeneous” in its solid component, and in additionthe porosity is randomly, but
fairly uniformly, distributed so there is a well-defined constant porosityφ(1) associated with
material 1, etc. To proceed further, I ask this question: Is it possible to find combinations
of δpc = δp(1)

c = δp(2)
c , δp(1)

f , and δp(2)
f so that the expansion or contraction of the system

is spatially uniform or self-similar? Or equivalently, canI find uniform confining pressure
δpc, and pore-fluid pressuresδp(1)

f andδp(2)
f , so that all these scalar conditions can be met

simultaneously? If so, then results for system constants can be obtained purely algebraically
without ever having to solve equilibrium equations of the mechanics. I initially setδpc =
δp(1)

c = δp(2)
c , as this condition of uniform confining pressure is clearly arequirement for the

self-similar thought experiment to be a valid solution of stress equilibrium equations. So, the
first condition to be considered is the equality of the strains of the two constituents:

δe(1) = −
1

K (1)
d

(δpc −α(1)δp(1)
f ) = δe(2) = −

1

K (2)
d

(δpc −α(2)δp(2)
f ). (3)

If this condition is satisfied, then the two constituents areexpanding or contracting at the same
rate and it is clear that self-similarity prevails, since

δe= v(1)δe(1) +v(2)δe(2) = δe(1) = δe(2). (4)

If I imagine thatδpc andδp(1)
f are fixed, then I need an appropriate value ofδp(2)

f , so that (3)
is satisfied. This requires that

δp(2)
f = δp(2)

f (δpc,δp(1)
f ) =

1− K (2)
d /K (1)

d

α(2)
δpc +

α(1)K (2)
d

α(2)K (1)
d

δp(1)
f , (5)
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showing that, for undrained conditions,δp(2)
f can almost always be chosen so the uniform

expansion takes place. Using (5), I now eliminateδp(2)
f from the remaining equality so

δe= −
[

a11δpc +a12δp(1)
f +a13δp(2)

f (δpc,δp(1)
f )
]

= δe(1) = −
1

K (1)
d

[

δpc −α(1)δp(1)
f

]

, (6)

whereδp(2)
f (δpc,δp(1)

f ) is given by (5). Making the substitution and then noting that δpc and

δp(1)
f were chosen independently and arbitrarily, I find the resulting coefficients must each

vanish. The two equations I obtain are

a11+a13

(

1− K (2)
d /K (1)

d

)

/α(2) = 1/K (1)
d (7)

and

a12+a13

(

α(1)K (2)
d /α(2)K (1)

d

)

= −α(1)/K (1)
d . (8)

Sincea11 is assumed to be known, (7) can be solved directly, giving

a13 = −
α(2)

K (2)
d

(

1− K (1)
d /K ∗

d

1− K (1)
d /K (2)

d

)

. (9)

Similarly, with a13 known, substituting into (8) gives

a12 = −
α(1)

K (1)
d

(

1− K (2)
d /K ∗

d

1− K (2)
d /K (1)

d

)

. (10)

So, formulas for three of the six coefficients are now known. [Also, note the similarity of the
formulas (9) and (10),i.e., interchanging indices 1 and 2 on the right hand sides takes us from
one expression to the other.] To evaluate the remaining coefficients, I consider what happens
to fluid increments during the self-similar expansion. I treat only material 1, but the equations
for material 2 are completely analogous. From the precedingequations,

δζ (1) = a12δpc +a22δp(1)
f +a23δp(2)

f (δpc,δp(1)
f ) =

v(1)

K (1)
d

[

−α(1)δpc + (α(1)/B(1))δp(1)
f

]

. (11)

Again substituting forδp(2)
f (δpc,δp(1)

f ) from (5) and noting that the resulting equation con-

tains arbitrary values ofδpc andδp(1)
f , the coefficients of these terms must vanish separately.

Resulting equations are

a12+a23(1− K (2)
d /K (1)

d )/α(2) = −α(1)v(1)/K (1)
d , (12)

and

a22+a23

(

α(1)K (2)
d /α(2)K (1)

d

)

= α(1)v(1)/B(1)K (1)
d . (13)
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Solving these equations, I obtain

a23 =
K (1)

d K (2)
d α(1)α(2)

[

K (2)
d − K (1)

d

]2

[

v(1)

K (1)
d

+
v(2)

K (2)
d

−
1

K ∗
d

]

, (14)

and

a22 =
v(1)α(1)

B(1)K (1)
d

−

(

α(1)

1− K (1)
d /K (2)

d

)2[
v(1)

K (1)
d

+
v(2)

K (2)
d

−
1

K ∗
d

]

. (15)

Performing the corresponding calculation forδζ (2) produces formulas fora32 anda33. Since
(14) is already symmetric in component indices, the formulafor a32 provides nothing new.
The formula fora33 is easily seen to be identical in form toa22, but indices 1 and 2 are
interchanged. Formulas for all five of the nontrivial coefficients of double porosity have now
been determined. These results also show how the constituent propertiesKd, α, B up-scale
at the macrolevel for a two-constituent composite (Berryman and Wang, 1995; Berryman and
Pride, 2002). I find

α = −
a12+a13

a11
=

α(1)(K ∗
d − K (2)

d )+α(2)(K (1)
d − K ∗

d)

K (1)
d − K (2)

d

, (16)

and

1

B
= −

a22+2a23+a33

a12+a13
. (17)

Note that all the important formulas [(8),(9),(11)-(14)] depend on the overall drained bulk
modulusK ∗

d of the system. So far this quantity is unknown and therefore must still be de-
termined independently either by experiment or by another analytical method. It should also
be clear that some parts (but not all) of the preceding analysis generalize to the multi-porosity
problem (i.e., more than two porosity types). A discussion of the issues surrounding solvability
of the multiporosity problem has been presented elsewhere (Berryman, 2002).

UP-SCALING MODEL FOR GEOMECHANICS OF RESERVOIRS

Elasticity of layered materialsNext, to determine the overall drained (or undrained) bulk and
shear moduli of the reservoir, assume a typical building block of the random system is a small
(relative to the size of the reservoir) “grain” of laminate material whose elastic response for a
transversely isotropic (hexagonal) system can be described locally by:
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whereσi j are the usual stress components fori , j = 1− 3 in Cartesian coordinates, with 3
(or z) being the axis of symmetry (the lamination direction for such a layered material). Dis-
placementui is then related to strain componentei j by ei j = (∂ui /∂xj + ∂uj /∂xi )/2. This
definition introduces some convenient factors of two into the 44,55,66 components of the ma-
trix of stiffness coefficients shown in (18). For definiteness I also assume that the matrix of
stiffness coefficients in (18) arises from the lamination ofN isotropic constituents having bulk
and shear moduliKn, µn, in the N > 1 layers present in each building block. It is important
that the thicknessesdn always be in the same proportion in each of these laminated blocks, so
that fn = dn/

∑

n′ dn′ . But the order in which layers were added to the blocks is not important,
as Backus’s formulas (Backus, 1962) for the constants show.For the overall quasistatic (long
wavelength) behavior of the system I am studying, Backus’s results [also see Postma (1955),
Berryman (1998; 2004b), Milton (2002)] state that

c33 =
〈

1
K+4µ/3

〉−1
, c13 = c33

〈

K−2µ/3
K+4µ/3

〉

,

c44 =
〈

1
µ

〉−1
, c66 = 〈µ〉 ,

c11 = c2
13

c33
+4c66−4

〈

µ2

K+4µ/3

〉

, c12 = c11−2c66.

(19)

This bracket notation can be correctly viewed as a line integral along the symmetry axisx3.
The bulk modulusKn and shear modulusµn displayed in these averages can be either the
drained or the undrained moduli for the individual layers. For the undrained case, the re-
sults are inherently assumed either to apply at very high frequencies, such as ultrasonic fre-
quencies in laboratory experiments, or to situations wherein each layer is physically isolated
so that fluid increments cannot move from one porous layer to the next. The bulk modu-
lus for each laminated grain is that given by the compressional Reuss averageK R of the
corresponding compliance matrixsi j [the inverse of the usual stiffness matrixci j , whose
nonzero components are shown in (18)]. The result ise = e11+ e22+ e33 = σ/Keff, where
1/Keff = 1/K R = 2s11+2s12+4s13+s33. Even thoughKeff = K R is the same for every grain,
since the grains themselves are not isotropic, the overall bulk modulusK ∗ of the random poly-
crystal does not necessarily have the same value asK R for the individual grains (Hill, 1952).
Hashin-Shtrikman bounds onK ∗ for random polycrystals whose grains have hexagonal sym-
metry (Peselnick and Meister, 1965; Watt and Peselnick, 1980) show in fact that theK R value
lies outside the bounds in many situations (Berryman, 2004). Bounds for random polycrystals

Voigt and Reuss bounds: hexagonal symmetry: For hexagonal symmetry, the nonzero stiffness
constants are:c11, c12, c13 = c23, c33, c44 = c55, andc66 = (c11− c12)/2. The Voigt (1928)
average for bulk modulus of hexagonal systems is well-knownto be

KV = [2(c11+c12)+4c13+c33] /9. (20)

Similarly, for the overall shear modulusG∗, I have

GV =
1

5

(

Gv
eff +2c44+2c66

)

, (21)

where the new term appearing here is essentially defined by (21) and given explicitly by

Gv
eff = (c11+c33−2c13−c66)/3. (22)
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The quantityGv
eff is the energy per unit volume in a grain when a “pure uniaxial shear”strain

of unit magnitude [i.e., (e11,e22,e33) = (1,1,−2)/
√

6], whose main compressive strain is ap-
plied to the grain along its axis of symmetry (Berryman, 2004a; 2004b). Note that the concept
of “pure uniaxial shear” strain (or stress) is based on the observation that if a uniaxial princi-
pal strain (or stress) of magnitude 3 is applied along the symmetry axis, it can be decomposed
according to (0,0,3)T = (1,1,1)T − (1,1,−2)T into a pure compression and a pure shear con-
tribution, which is then called for the sake of brevity the “pure uniaxial shear.” The Reuss
(1929) averageK R for bulk modulus can also be written in terms of stiffness coefficients as

1

K R−c13
=

1

c11−c66−c13
+

1

c33−c13
. (23)

The Reuss average for shear is

GR =
[

1

5

(

1

Gr
eff

+
2

c44
+

2

c66

)]−1

, (24)

that definesGr
eff – i.e., the energy per unit volume in a grain when a pure uniaxial shearstress

of unit magnitude [i.e., (σ11,σ22,σ33) = (1,1,−2)/
√

6], whose main compressive pressure is
applied to a grain along its axis of symmetry. For each grain having hexagonal symmetry,
two product formulas found by Berryman (2004a) hold: 3K RGv

eff = 3KV Gr
eff = ω+ω−/2 =

c33(c11− c66) − c2
13. The symbolsω± stand for the quasi-compressional and quasi-uniaxial-

shear eigenvalues for the crystalline grains. Thus, it follows that

Gr
eff = K RGv

eff/KV (25)

is a general formula, true for hexagonal symmetry.Hashin-Shtrikman bounds: It has been
shown elsewhere (Berryman, 2004a; 2004b) that the Peselnick-Meister-Watt (Peselnick and
Meister, 1965; Watt and Peselnick, 1980) bounds for bulk modulus of a random polycrystal
composed of hexagonal (or transversely isotropic) grains are given by

K ±

P M =
KV (Gr

eff + ζ±)

(Gv
eff + ζ±)

=
K RGv

eff + KVζ±

Gv
eff + ζ±

, (26)

whereGv
eff (Gv

eff) is the uniaxial shear energy per unit volume for a unit applied shear strain
(stress). The second equality follows directly from the product formula (25). Parametersζ±

are defined by

ζ± =
G±

6

(

9K± +8G±

K± +2G±

)

. (27)

In (27), values ofG± (shear moduli of isotropic comparison materials) are givenby inequali-
ties

0 ≤ G− ≤ min(c44,Gr
eff,c66), (28)

and

max(c44,G
v
eff,c66) ≤ G+ ≤ ∞. (29)
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The values ofK± (bulk moduli of isotropic comparison materials) are then given by algorith-
mic equalities

K± =
KV (Gr

eff − G±)

(Gv
eff − G±)

, (30)

derived by Peselnick and Meister (1965) and Watt and Peselnick (1980). Also see Berryman
(2004a). BoundsG±

hex (+ is upper bound,− is the lower bound) on the shear moduli for
random polycrystals of hexagonal crystals are then given by

1

G±

hex+ ζ±

=
1

5

[ 1+γ±(KV − K±)

Gv
eff + ζ± + δ±(KV − K±)

+
2

c44+ ζ±

+
2

c66+ ζ±

]

, (31)

whereγ± andδ± are given by

γ± =
1

K± +4G±/3
, and δ± =

5G±/2

K± +2G±

. (32)

KV is the Voigt average of the bulk modulus as defined previously.

TABLE 1. Input Parameters for Weber Sandstone Model of Double-Porosity System.

Ks K (1)
s K (1)

d G(1)
d φ(1) K (2)

s K (2)
d G(2)

d φ(2)

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

27.9 28.0 19.3 20.2 0.095 27.0 0.24 0.60 0.095

Note: Porosityφ is dimensionless.

EXAMPLE: WEBER SANDSTONE

Figure 3: Bulk modulus bounds and
self-consistent estimates for the ran-
dom polycrystal of porous laminates
model of a Weber sandstone reser-
voir. jim1-weberK [NR]
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Weber sandstone is one possible host rock for which the required elastic constants have
been measured by Coyner (1984). TABLE 1 displays the values needed in the double-porosity
theory presented here. These values follow from an analysisof Coyner’s data if I assume the
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Figure 4: Shear modulus bounds and
self-consistent estimates for the ran-
dom polycrystal of porous laminates
model of a Weber sandstone reser-
voir. jim1-weberG [NR]
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Figure 5: Values of double-porosity
coefficientsai j for a system similar to
Weber sandstone. Values used for the
input parameters are listed in TABLE

1. For each coefficient, three curves
are shown, depending on which esti-
mate of the overall bulk modulus is
used: lower bound (dot-dash line),
self-consistent (solid line), or upper
bound (dashed line).jim1-weberaij
[NR]
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stiffer phase occupies about 92% of the volume and the more compliant phase the remaining
8% of total volume. The drained bulk moduli of the storage andfracture phases are used
in the effective medium theory of the previous section to determine the overall drained and
undrained bulk moduli of the random polycrystal of laminates system. Results for the self-
consistent estimates (Berryman, 2004b), and the upper and lower bounds for the bulk moduli
are all displayed in Figure 3. I see the undrained moduli are nearly indistinguishable, but
the drained constants show some dispersion. Similarly, I show bounds and self-consistent
estimates for the overall shear modulus of this model reservoir in Figure 4. Both undrained
and drained shear moduli show some dispersion. Note that a correction must be applied to
(31) before computing the self-consistent effective constants. The self-consistent estimates
for bulk modulus are found correctly from the bounds (26) by taking K± → K ∗, G± → G∗,
and thereforeζ± → ζ ∗. The resulting formula is

K ∗ = KV
(Gr

eff + ζ ∗)

(Gv
eff + ζ ∗)

. (33)

The self-consistent formula for shear modulus requires more effort. The difficulty is that the
formula given in (31) has already made use of a constraint that is only true along the bound-
ing curves defining the upper and lower bounds on shear modulus. Since the self-consistent
estimate always falls at points away from this curve, a more general result must be employed.
When the inappropriate constraint is replaced by the general formula and then (33) is substi-
tuted, I find instead that the self-consistent formula for shear modulus is given by

1

G∗ + ζ ∗
=

1

5

(

1+γ ∗(KV − K ∗)

Gv
eff + ζ ∗

+
2

c44+ ζ ∗
+

2

c66+ ζ ∗

)

, (34)

whereγ ∗ = 1/(K ∗ +4G∗/3). The main difference is that the denominator of the first term on
the right hand side is simpler than it is in the formulas for the shear modulus bounds. Observed
dispersion is small over the range of volume fractions considered. Then these drained values
K ∗

d , K ±

d are used in the formulas of the second section to determine both estimates and bounds
on the double-porosity coefficients. These results are thendisplayed in Figure 5, which is also
the main result of this paper. Note that the curves fora11 essentially repeat results shown in
Figure 3, but for the compliance 1/K ∗

d , instead of the stiffnessK ∗
d . The coefficientsa12, a22,

anda23 show little dispersion. This is natural fora12 anda22 because the storage material
contains no fractures, and therefore is not sensitive to fracture compliance, whereas those
mechanical effects on the overall reservoir response can bevery large. The behavior ofa23

also shows little dispersion as this value is always very close to zero (Berryman and Wang,
1995; Berryman and Pride, 2002). The two remaining coefficients show a significant level of
dispersion area13 anda33, where the third stress is the pore pressurep(2)

f of the fracture or
joint phase. I generally expect that the joint phase is most tightly coupled to, and therefore
most sensitive to, the fluctuations in overall drained bulk modulusK ∗

d . So all these results are
qualitatively consistent with our intuition. Since I have analytical formulas for all theai j ’s, it
is straightforward to check that the observed dispersion ina13 anda33 is directly proportional
to the dispersion in 1/K ∗

d (or, equivalently,a11).
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CONCLUSIONS

The methods presented have been successfully applied to determine geomechanical parame-
ters for one reservoir model assuming Weber sandstone is thehost rock. Although the details
differ, the general ideas used above for elastic and poroelastic constants can also be used to
obtain bounds and estimates of electrical formation factorand fluid permeability for the same
random polycrystal of porous laminates model. Analysis of permeability and fluid flow for
this model (and especially memory effects) requires some extra care, and so I defer this part
of the work to another contribution. The present work has concentrated on an examination of
the very low frequency (quasi-static, drained behavior) and very high frequency (undrained
behavior) results for the double-porosity model using composites theory as the main analysis
tool. This approach is justified in part because it is well-known (using one pertinent exam-
ple) in the analysis of viscoelastic media (Hashin, 1966; 1983; Vinogradov and Milton, 2005)
that the low and high frequency viscoelastic limits can bothbe treated using the methods of
quasi-static composites analysis, since the complex moduli become real in these limits. The
corresponding result is certainly pertinent for the full double-porosity reservoir analysis as
well. Further work is needed of course to determine the behavior for all the intermediate
frequencies, but this harder part of the work will necessarily be both partly analytical [for
example: Prideet al. (2004)] and partly computational [for example: Lewallen and Wang
(1998)] in nature, and will therefore be presented in futurepublications.
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