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Iterative linearized migration and inversion

Huazhong Wang1

ABSTRACT

The objective of seismic imaging is to obtain an image of the subsurface reflectors, which
is very important for estimating whether a reservoir is beneficial for oil/gas exploration or
not. It can also provide the relative changes or absolute values of three elastic parameters:
compressional wave velocityVp, shear wave velocityVs, and densityρ. Two ways can
achieve the objectives. In approach I, the angle reflectivity is given by prestack depth/time
migration or linearized inversion, and the relative changes of the three elastic parameters
are estimated from the angle reflectivity by AVO/AVA inversion. In, approach II, the rel-
ative changes (by linearized inversion) or absolute values(by nonlinear waveform inver-
sion) are obtained directly. I compare non-iterative linearized migration/inversion imag-
ing, iterative linearized migration/inversion imaging, and non-linear waveform inversion.
All of these imaging methods can be considered as back-projection and back-scattering
imaging. From backscattering imaging, we know that seismicwave illumination has a key
influence on so-called true-amplitude imaging, and I give ananalysis for the possibility of
relative true-amplitude imaging. I also analyze the factors that affect the imaging quality.
Finally, I point out that the Born approximation is not a goodapproximation for linearized
migration/inversion imaging, and that the De Wolf approximation is a better choice.

INTRODUCTION

The main objective of migration imaging is to generate an image of the reflectors, that is, to
position reflection points and scattering points at their true subsurface locations. The method-
ology is to downward continuate the observed wavefield to thereflection points or scattering
points using a known macro-velocity model with appropriatepropagators, and to pick out
the focused wavefield with an imaging condition. The focusedwavefield displays the im-
age of reflectors or scatterers. Therefore, I give the definition for migration imaging:Based
on some assumptions about the geological medium and with thehelp of mathematical
models, the observed seismic wavefield is extrapolated to the subsurface reflectors using
a macro-velocity model with a propagator, and the imaging amplitudes are extracted
with an imaging condition. Generally, the geological medium is assumed to be an acoustic
medium, and the mathematical model is either the one-way wave equation or the Kirchhoff
integral operator. However, migration imaging has not completely satisfied the needs of oil
and gas exploration, since many reservoirs found recently are controlled not only by their
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geological structures but also by their lithology. Therefore, the lithological parameters are
increasingly important to oil and gas exploration. Lithological parameter estimation is typi-
cally an inverse problem. In essence, migration imaging is an inverse problem, and it is also
ill-posed. However, migration imaging is changed into an apparently well-posed problem by
splitting it into two processes: wavefield extrapolation and macro-velocity analysis. The main
objective of inversion imaging is to estimate lithologicalparameters or their disturbances, in-
cluding reflectivity, P-wave velocity, S-wave velocity, and the density. There are linearized
and non-linear inversions. The basis of linearized inversion is to linearize the formula char-
acterizing the scattering wavefield with the Born approximation. The Born approximation is
a "physical" approximation, with which only the primaries are modeled. The analytical (for
constant background) or formal (for variable background) inversion formulas can be derived
from the linearized forward-modeling formulas. This is a non-iterative linearized inversion.
Based on least-squares theory, an iterative linearized inversion approach can be derived from
linearized forward modeling. For the non-linear waveform inversion, only the wave propaga-
tor is linearized at a point in the model space. With the propagator, all of the wave phenomena
are characterized. We call this linearization as a "mathematical" approximation, with which
both primaries and multiples are simulated. This is the maindifference between the two in-
version approaches. Theoretically, the non-linear inversion (Tarantola, 1984; Mora, 1987) is
superior to the linearized inversion (Bleistein et al., 1987; Bleistein, 1987). In practice, it is
very difficult to recover all wavenumber components of the lithological parameters, since the
seismic data is frequency-band-limited and aperture-limited and polluted with non-Gaussian
noise. Therefore, the linearized migration/inversion is becoming more and more important,
especially the iterative linearized migration/inversionapproach. Stolt and Weglein (1985) dis-
cussed the relation between the migration and the linearized inversion. Gray (1997) gave a
comparison of three different examples of true-amplitude imaging. So-called true-amplitude
imaging tries to recover the reflectivity of the reflectors.

In this paper, I compare non-iterative linearized migration/inversion imaging, iterative lin-
earized migration/inversion imaging, and nonlinear waveform inversion. All of these imaging
methods can be considered as back-projection and backscattering imaging. From backscat-
tering imaging, we know that seismic wave illumination has akey influence on so-called
true-amplitude imaging, and I give an analysis for the possibility of relative true-amplitude
imaging. I also analyze the factors which affect the image quality. Finally, I point out that the
Born approximation is not a good approximation for linearized migration/inversion imaging,
and that the De Wolf approximation is a better choice.

WAVE PROPAGATOR AND ITS LINEARIZATION

[1] Acoustic wave equation

Based on inverse theory, the characterization of seismic wave propagation is important for
parameter estimation. Here I use the acoustic wave equationwith two elastic parameters —
bulk modulus and density — to model seismic wave propagationin a geological medium,
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though we know that this is a simplification.

L P ≡
(

∇ · 1

ρ (Ex)
∇ + ω2

κ (Ex)

)

P (Ex, Exsω) = δ (Ex − Exs) S(ω) , (1)

whereκ is the bulk modulus andρ is the density. Both parameters vary horizontally as well
as vertically. P (Ex, Exs,ω) is the acoustic pressure wave field, andS(ω) is the monochromatic
source function. We can carry out the full waveform inversion with equation (1). Taran-
tola (1984) gave a detailed theoretical framework. Pratt and Hicks (1998) discussed in detail
how to implement seismic waveform inversion in the frequency domain. Now I introduce a
background model which is so close to the true model that we can neglect the second and
higher-order reflection and transmission effects caused bythe interaction between the incident
wave and the scattering potential. The background wavefieldobeys the following equation:

L0P ≡
(

∇ · 1

ρ0
∇ + ω2

κ0

)

P (Ex, Exs,ω) = δ
(

Ex − Exs)S(ω) . (2)

With the definitionV = L − L0, the identityA = B + B
(

B−1 − A−1
)

A becomes

G = G0 + G0V G, (3)

if we associateG with A andG0 with B. And equation (3) is further rearranged to

G = (I − G0V)−1 G0. (4)

Performing a Taylor expansion on the right term of equation (4) yields

G =





∞
∑

j =0

(G0V) j



G0. (5)

Equation (3) is called the Lippmann-Schwinger equation(Clayton and Stolt, 1981). Clearly,
if j ≥ 2, equation (5) depicts second and higher-order scatteringterms of wave propagation,
which are neglected. The linearized propagator characterizes only the first scattering of wave
propagation. That is,

G = G0 + G0V G0. (6)

This is the Born approximation, the physical meaning of which is clearly demonstrated by

equations (5) and (6). FromL = −
(

∇ · 1
ρ
∇ + ω2

κ

)

andL0 = −
(

∇ · 1
ρ0

∇ + ω2

κ0

)

, the scattering

potentialV is defined as follows:

V =
(

∇ · 1

ρ
∇ + ω2

κ

)

−
(

∇ · 1

ρ0
∇ + ω2

κ0

)

= ∇ ·
(

1

ρ
− 1

ρ0

)

∇ +ω2
(

1

κ
− 1

κ0

)

= ∇ · 1

ρ0

(

ρ0

ρ
−1

)

∇ +ω2 1

κ0

(κ0

κ
−1

)

= ∇ · a1

ρ0
∇ +ω2a2

κ0
(7)
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wherea1 = ρ0
ρ

− 1 = 4ρ

ρ
and4ρ = ρ0 −ρ; a2 = κ0

κ
− 1 = 4κ0

κ
and4κ = κ0 − κ. Therefore

the linearized synthetic wave field is composed of two parts:one is the background wave field
described by the background Green’s function; the other is the scattering wavefield caused by
the scattering potentialV . According to equation (3), the total wave field is written as

P (Exr , Exs,ω) = G0 (Exr , Exs,ω)+ω2
∫

d3xG0 (Exr , Ex,ω)V (Ex) P (Ex, Exs,ω) , (8)

and the scattering wavefield after the Born approximation from equation (6) is

Ps (Exr , Exs,ω) = ω2
∫

d3xG0 (Exr , Ex,ω)V (Ex)G0 (Ex, Exs,ω) . (9)

[2] Scalar wave equation

In seismic wave imaging, the scalar wave equation is much more commonly used. Given the
Fourier transform of the scalar wave equation for a point source,

L P (Ex, Exs,ω) =
(

∇2 + ω2

v2 (Ex)

)

P (Ex, Exs,ω) = −δ (Ex − Exs) S(ω) . (10)

Equation (10) is a Helmholtz equation. HereP (Ex, Exs,ω) is a total pressure field,v (Ex) is the
variable acoustic velocity, the density is assumed to be constant, andS(ω) is a source function.
Taking an initial estimation of the medium velocity,v (Ex), as the background velocityv0 (Ex),
v (Ex) can be split into the known and unknown parts by the following:

1

v2 (Ex)
= 1

v2
0 (Ex)

(1+a(Ex)) , (11)

where the background velocityv0 (Ex) need not be constant. The variablea(Ex) is the unknown
velocity perturbation to be determined from the data, whichis called the scattering potential of
the medium, since it is a measure of the scattering strength at points where the actual medium
differs from the background medium. Substituting equation(11) into equation (10) yields

L P (Ex, Exs,ω) =
(

∇2 + ω2

v2
0 (Ex)

)

P (Ex, Exs,ω) = −δ (Ex − Exs) S(ω)−ω2a(Ex) P (Ex, Exs,ω) . (12)

For the background medium, the background Green’s functionsatisfies the following equation:

L0G0 (Ex, Exs,ω) =
(

∇2 + ω2

v2
0 (Ex)

)

G0 (Ex, Exs,ω) = −δ (Ex − Exs) . (13)

Therefore, with the help of the Lippman-Schwinger equationof equation (3), the total pressure
wave is

P (Exr , Exs,ω) = G0 (Exr , Exs,ω)+ω2
∫

d3xG0 (Exr , Ex,ω)a(Ex) P (Ex, Exs,ω) , (14)
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and the scattering wave field caused by the scattering potential a(Ex) is

Ps (Exr , Exs,ω) = ω2
∫

d3xG0 (Exr , Ex,ω)a(Ex)G0 (Ex, Exs,ω) . (15)

Equations (9) and (15) create a link between the scattered wavefield and the scattering poten-
tials. They are Fredholm integral equations of the first kindand are the bases of the linearized
inversion. Given the observed scattered wavefield, the scattering potentials can be solved.

[3] The scattering potential and the reflectivity
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Figure 1: The acoustic wave reflectivity and the transmission of a planar reflector in the case
of zero incident anglehuazhong1-reflectivity[CR]

From Fig.1, and assuming that the density is constant, the normal reflectivity is defined as

R|θ=0 = v2 −v1

v2 +v1
, (16)

and the transmission coefficient is

T |θ=0 = 2v2

v2 +v1
, (17)

whereθ is the incident angle. Therefore, defining the scattering potential as 1+ a(Ex) =
(

v0(Ex)
v(Ex)

)2
, equation (16) and (17) can be rewritten as

R|θ=0 = 1−
√

1+a

1+
√

1+a
, (18)

and

T |θ=0 = 2

1+
√

1+a
, (19)
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respectively. If waves meet a reflector with a non-zero incident angle, the reflectivity and
transmission coefficient are

R(θ1) = v2cosθ1 −v1cosθ2

v2cosθ1 +v1cosθ2
, (20)

and

T (θ1) = 2v2cosθ1

v2cosθ1 +v1cosθ2
. (21)

Similarly, they can be expressed with the scattering potential as

R(θ1) = cosθ1 −
√

1+acosθ2

cosθ1 +
√

1+acosθ2
, (22)

and

T (θ1) = 2cosθ1

cosθ1 +
√

1+acosθ2
, (23)

respectively. The angle reflectivity has a close relation tothe scattering potentials. Generally,
the angle reflectivity is estimated by amplitude-preservedimaging, and lithological parameter
disturbances are evaluated from them by AVO/AVA inversion.

ITERATIVE INVERSION IMAGING ALGORITHMS

[1] Operator linearizeation in non-linear inversion

A linear operatorL depicts a physics process. It can be written as

Lm = d, (24)

whered is the synthetic wavefield andm is a medium model. The linear operatorL can be
seen as a function, which can be expanded into a Taylor seriesnear a known modelm0 as
follows:

Lm = Lm0 + ∂L

∂m
4m+ ∂2L

∂m2
(4m)2 +·· ·+ ∂nL

∂mn
(4m)n +·· · . (25)

Omitting all the terms that are higher than second-order yields a linearized equation:

∂L

∂m
4m ≈ Lm− Lm0. (26)

If Lm stands for the observed data, and ifLm0 synthesizes a wavefield with a known back-
ground model and a given operator, equation (26) can be rewritten as

∂L

∂m
4m ≈ dobs−dcal. (27)
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Equation (27) can be regarded as a matrix equation, which maybe ill-conditioned. The model
disturbance can be solved by many linear algebraic algorithms. If the background modelm0 is
very close to the true model, the true model can be approachedby some iterative algorithms.
This idea is meaningful, but impractical. In fact, equation(27) can be simplified to

Aδm = δd, (28)

whereA = ∂L/∂m andδd = dobs− dcal. Least-squares methods are then used to solve the
inverse problem. Equations (9) and (15) can also be expressed in the form of equation (28).
Comparing equation (28) with equations (9) and (15), it is clearly seen that the main difference
between linearized inversion and non-linear waveform inversion consists in the forward mod-
eling operator. The operator after Born approximation models only the primaries; however,
the Frechèt derivativeA = ∂L/∂m models all the wave phenomena. The Born approxima-
tion should be replaced by the De Wolf approximation. The non-linear inversion incurs much
higher calculation costs.

[2] L2 norm or cost function definition

Based on least-squares theory, a minimizing problem can be defined, which aims to findδm∗

in order to minimize the cost function. TheL2 norm or cost function definition is given by

f (δm) = ‖Aδm − δd‖2
2. (29)

In order to constrain the inverse problem, or to use some prior information to bound the solu-
tion of the inverse problem, regularization is commonly used. In this case, the cost function
needs to be modified.

[3] Iterative algorithms

Many algorithms can be chosen to solve the minimizing problem which is determined by the
property of matrixA. The matrix A is hoped to be positive definite. Here only Newton’s
iterative algorithms are listed.[A] Initial Newton’s approach Performing a Taylor expansion
of f (δm) near the pointδm(k) yields

f (δm) ≈ φ (δm)

= f
(

δm(k))+∇ f
(

δm(k))(δm− δm(k))

+ 1

2

(

δm− δm(k))T ∇2 f
(

δm(k))(δm− δm(k)) . (30)

Letting∂φ (δm)/∂δm = 0 yields∇ f
(

δm(k)
)

+∇2 f
(

δm(k)
)(

δm− δm(k)
)

= 0. If the Hessian
∇2 f

(

δm(k)
)

is invertible, the Newton iterative algorithm is

δm(k+1) = δm(k) −
[

∇2 f
(

δm(k))]−1∇ f
(

δm(k)) . (31)
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Clearly, the simple Newton iterative algorithm lacks 1D searching. The Newton iterative al-
gorithm with 1D searching is called the damping Newton algorithm. Algorithm procedure:

(a) Assign the initial modelδm(1) and the acceptable errorε < 0 and set the iterative
numberk = 1.

(b) Calculate∇ f
(

δm(k)
)

and
[

∇2 f
(

δm(k)
)]−1

.

(c) If ‖∇ f
(

δm(k)
)

‖ ≤ ε, then stop iteration; otherwise,d(k) =−
[

∇2 f
(

δm(k)
)]−1∇ f

(

δm(k)
)

.

(d) Starting fromδm(k), carry out 1D searching along the searching directiond(k) for λ(k)

satisfying f
[(

δm(k)
)

+λkd(k)
]

= min
{

f
[(

δm(k)
)

+λd(k)
]}

λ≥0.

(e) Lettingδm(k+1) = δm(k) +λkd(k) andk := k+1, go to step (b). If the Hessian∇2 f
(

δm(k)
)

is not positive definite, the Newton algorithm should be modified further. That means∇2 f
(

δm(k)
)

is replaced with∇2 f
(

δm(k)
)

+εk I . If the εk is chosen suitably, the matrix∇2 f
(

δm(k)
)

+εk I
will be positive definite.[B] Quasi-Newton algorithm: The main feature of this algorithm
is that the inverse of the Hessian matrix is not explicitly calculated. Further implementing the
differential operation on both sides of equation (30) yields

∇ f
(

δm(k))≈ ∇ f
(

δm(k+1))+∇2 f
(

δm(k+1))(δmk − δm(k+1)) , (32)

and definingp(k) = δmk − δm(k+1) andq(k) = ∇ f
(

δm(k+1)
)

−∇ f
(

δm(k)
)

yields the Quasi-
Newton condition,

p(k) = Hk+1q(k), (33)

where Hk+1 =
[

∇2 f
(

δm(k+1)
)]−1

. A series of formulas for calculatingHk+1 is listed be-

low: Formula 1:Hk+1 = Hk +
(

p(k)−Hkq(k))(p(k)−Hkq(k))T

(q(k))T(p(k)−Hkq(k))
. Formula 2:H DF P

k+1 = Hk + p(k)(p(k))T

(p(k))T q(k)
−

(

Hkq(k))(Hkq(k))T

(qk)T Hkq(k)
, which is the DFP (Davidon-Fletcher-Powell) algorithm. Formula 3: H B FGS

k+1 =

Hk+
(

1+
(

q(k))T Hkq(k)

(p(k))T q(k)

)

p(k)(p(k))T

(p(k))T q(k)
− p(k)(q(k))T Hk+Hkq(k)(p(k))T

(pk)T q(k)
, which is the BFGS (Broyden-Fletcher-

Goldfarb-Shanno) algorithm. Formula 4:Hφ

k+1 = (1−φ) H DF P
k+1 +φH B FGS

k+1 , whereφ is an
parameter. The algorithm procedure is as follows:

(a) Assign the initial modelδm(1) and the acceptable errorε < 0.

(b) SettingH1 = In and the iterative numberk = 1, calculateg1 = ∇ f
(

δm(1)
)

.

(c) Letd(k) = −Hkgk.

(d) Starting fromδm(k), carry out 1D searching along the searching directiond(k) for λ(k)

satisfying f
[(

δm(k)
)

+λkd(k)
]

= min
{

f
[(

δm(k)
)

+λd(k)
]}

λ≥0.

(e) If ‖∇ f
(

δ m(k)
)

‖ ≤ ε, then stop iteration; otherwise, go to Step (f).

(f) If k = n, then let‖δm(1) = δm(k+1)‖, go to Step(b); Otherwise, go to Step (g).

(g) Lettinggk+1 =∇ f
(

δm(k+1)
)

, p(k) = δm(k) −δm(k+1) andq(k) =∇ f
(

δm(k+1)
)

−∇ f
(

δm(k)
)

,
calculateHk+1 with any of Formula 1-4. Settingk := k+1, go to Step (c).



SEP–123 Imaging 109

COMPARISON AMONG MIGRATION/INVERSION METHODS

(A) Non-iterative linearized migration/inversion

(1) Wave equation prestack migration/inversion

Near the scattering pointEx, we can define an error function or a norm as

E(R(Ex)) =
ωmax
∑

ωmin

(US(Ex,ω)−UI (Ex,ω) R(Ex))2dω, (34)

whereR(Ex) is the reflectivity,US(Ex,ω) is the upcoming wavefield, which is downward ex-
trapolated to a reflector, andUI (Ex,ω) is the incident wavefield propagated to the reflector. At
the scattering pointEx , the scattering wavefieldUS(Ex,ω) should be equal or close to the con-
volution between the incident wavefieldUI (Ex,ω) and the reflectivity function. From equation
(34), the imaging condition of the migration/inversion is as follows:

R(Ex) =

ωmax
∑

ωmin

US(Ex,ω)U∗
I (Ex,ω)

ωmax
∑

ωmin

(

UI (Ex,ω)U∗
I (Ex,ω)+ε

)

. (35)

The term in the numerator is a correlation imaging for prestack migration. The term in the
denominator expresses the illumination of the scattering points. Fig.2 geometrically explains
the imaging condition, which says that the imaging occurs atthe arrival time of the incident
wave which equals the take-off time of the upcoming wave. In the frequency domain, the

Figure 2: The geometry explication
of the cross-correlation imaging con-
dition. S∗ is a virtual source of the
real sourceS. The propagatorL∗ is
the conjugate of the downward prop-
agatorL. Therefore, both the prop-
agatorL H andL∗ collapse the wave-
fronts into a point—the imaging point
P. huazhong1-Imaging_fig[CR]

P

S R

S *

Wavefront

Wavefront

Wavefront

Reflector

Focusing Point
or Imaging Point

L

L

*S

Hdobs

extrapolated upcoming wavefield at the scattering point is

US(Ex,ω) = GH (Exr , Ex,ω)dobs(Exr , Exs,ω) , (36)
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and the incident wavefield at the same point is

UI (Ex,ω) = G (Ex, Exs,ω) . (37)

Substituting equations (36) and (37) into equation (35) andapplying the WKBJ approximation
to the Green’s functions, we can rewrite equation (35) as follows:

R(Ex) =

ωmax
∑

ωmin

G (Ex, Exs,ω)GH (Exr , Ex,ω)dobs(Exr , Exs,ω)

ωmax
∑

ωmin

[

G (Ex, Exs,ω) (G (Ex, Exs,ω))∗ +ε
]

=

ωmax
∑

ωmin

A(Ex, Exs,ω)eiωτ (Ex,Exs,ω) A(Exr , Ex,ω)eiωτ (Exr ,Ex,ω)dobs(Exr , Exs,ω)

ωmax
∑

ωmin

|A(Ex, Exs,ω) |2

=

ωmax
∑

ωmin

A(Exr , Ex, Exs,ω)eiωτ (Exr ,Ex,Exs,ω)dobs(Exr , Exs,ω)

ωmax
∑

ωmin

|A(Ex, Exs,ω) |2
, (38)

where A(Exr , Ex, Exs,ω) = A(Ex, Exs,ω) A(Exr , Ex,ω) and τ (Exr , Ex, Exs,ω) = τ (Ex, Exs,ω) + τ (Exr , Ex,ω).
From equation (38), it is clear that the seismic illumination plays a key role in migration/inversion
imaging. The possibility of relative true-amplitude imaging will be discussed later.

(2) Wave theory tomography

(a) Fourier Diffraction Tomography for constant background Wu and Toksoz (1987) gave
the plane-wave response in the directionEr from an incident waveEi :

Ppl
S

(

Ei ,Er
)

= −k2Õ
[

k
(

Er −Ei
)]

(39)

whereÕ
[

k
(

Er −Ei
)]

is the 3D Fourier transform of the object functionO (Er ). Ppl
S

(

Ei ,Er
)

is

some kind of projection. Comparing this to linear Radon transform, we know that the ob-
ject function can be accurately restored if the angles of theplane waves continuously change
around the object. Fig.3 shows the projection from the real plane wave source and from the
virtual plane wave source.

(b) Inverse Generalized Radon Transformfor variable background The scattered wave-
field after Bron and WKBJ approximation is of the following form:

PS(Er ,Es, t) = − ∂2

∂t2

∫

�

A(Er , Ex,Es)δ
[

t − τ (Er , Ex,Es)
]

f (Ex)d3Ex

= −
∫

�

A(Er , Ex,Es)δ" [t − τ (Er , Ex,Es)
]

f (Ex)d3Ex, (40)
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Figure 3: The geometry
of plane wave propagation.
huazhong1-planewave_tomography
[CR]

S pl

S pl
* Virtual Plane Wave  Source

Rpl

The Object ( or  sacttering body)

where A(Er , Ex,Es) = A(Er , Ex) A(Ex,Es) and τ (Er , Ex,Es) = T (Es, Ex) + T (Er , Ex). It is known that the
diffraction-time surfaceRx = {d : t = T (Es, Ex)+ T (Er , Ex)} in the data space is a counterpart of
the isochron surfaceId = {x : t = T (Es, Ex)+ T (Er , Ex)} in the model space. These dual geometric
associations naturally give rise to a corresponding pair ofprojection operators. Equation (40)
can be written as

PS(d) = − ∂2

∂t2

∫

Id

A(Er , Ex,Es) f (x) . (41)

The diffraction curve in the data space is a projection of an isochron in the model space. This
is a kind of Radon transform (Miller et al., 1987; Hubral et al., 1996). The standard Radon
transform and inverse Radon transform in three dimensions are given by

f 4
(

Eξ , p
)

=
∫

δ

(

p− Eξ · Ex
)

f (Ex)d3Ex (42)

and

f (Ex0) = − 1

8π2

∫
[

∂2

∂p2
f 4
(

Eξ , p
)

|p=Eξ ·Ex0

]

d2ξ (43)

respectively, wherep is the distance from the origin to a plane which cuts through the object
body,ξ is the unity direction vector which is normal to the plane, and Ex is a point on the plane.
Comparing this with the classical Radon transform and its inverse, the final 3D inversion
formula can be given as

f (Ex0) = 1

π2

∫

d2ξ (Er , Ex0,Es)
|cos3α (Er , Ex0,Es) |
v3

0 (Ex0) A(Er , Ex0,Es)
PS(Er ,Es, t = τ0) . (44)

In equation (44), the angle variableξ (Er , Ex0,Es) near the imaging pointEx0 is used, rather than the
measurement configuration at the surface. Fig.4 illustrates this. The angle variable is related to
the measurement configuration and reflects the seismic wave illumination aperture. Only if the
aperture is large can a high resolution image be obtained. The relative true-amplitude imaging
is severely affected by the angle variable. Bleistein and Stockwell (2001); Zhang (2004) gave
some similar true-amplitude migration/inversion formulas.
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Figure 4: The geometry between the
incident and scattering rays near the
scattering point, or imaging pointx0.
huazhong1-GRT_fig[CR]
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(3) Least-squares migration/inversion

The conventional prestack migration can be characterized as

δmmig = AH δd, (45)

whereAH is a conjugate transpose matrix, which is a back-propagatorof the wavefield. The
least-squares prestack migration/inversion imaging can be carried out by the following equa-
tion:

δminv =
(

AH A
)−1(

AH δd
)

= H−1(AH δd
)

= H−1δmmig, (46)

whereH = AH A is a Hessian matrix. The meaning of the Hessian will be discussed in detail.
Equation (46) says that the deconvolution of the conventional prestack migration by the inverse
of the Hessian produces the migration/inversion results.

(B) Iterative linearized migration/inversion

We can define a minimizing problem that aims at findingδm∗ by minimizing the following
cost function:

f (δm) = ‖Aδm − δd‖2
2. (47)

The Newton iterative algorithms can be used for solving the minimizing problem. The stan-
dard Newton iterative algorithm is

δm(k+1) = δm(k) −
[

∇2 f
(

δm(k))]−1∇ f
(

δm(k)) . (48)

However, the inverse of the Hessian is difficult to calculate. The Quasi-Newton algorithms are
used commonly. The inverse of the Hessian matrix can be calculated with the DFP formula:

H DF P
k+1 = Hk + p(k)

(

p(k)
)T

(

p(k)
)T q(k)

−
(

Hkq(k)
)(

Hkq(k)
)T

(

qk
)T

Hkq(k)
(49)
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wherep(k) = δmk − δm(k+1), andq(k) = ∇ f
(

δm(k+1)
)

−∇ f
(

δm(k)
)

.

The Quasi-Newton iterative algorithm is

δm(k+1) = δm(k) − Hk+1∇ f
(

δm(k)) . (50)

(C) Non-linear waveform inversion

The basic procedure for non-linear waveform inversion is similar to the linearized iterative
migration/inversion. It is worth mentioning again that theFrechèt derivative in the non-linear
waveform inversion is quite different from the propagator after the Born approximation in the
linearized migration/inversion.

ASPECTS OF LINEARIZED MIGRATION/INVERSION

[1] Numerical calculation of Green’s function

The forward and backward propagations of the wavefield play akey role in the migration/inversion
imaging. The Helmholtz equation is commonly used for depicting wave propagation in acous-
tic media. Based on it, I derive the formulas for traveltime and amplitude calculation corre-
sponding to the main seismic wave energy. In spherical coordinates, the Helmholtz equation
is of the following form:

∇2Ũ (θ ,ϕ,r ;ω) =
{

1

r 2

∂

∂r

(

r 2 ∂

∂r

)

+ 1

r 2

∂

∂θ

(

sinθ
∂

∂θ

)

+ 1

r 2sin2θ

∂2

∂ϕ2

}

Ũ (θ ,ϕ,r ;ω)

= −ω2

v2
Ũ (θ ,ϕ,r ;ω) . (51)

Equation (51) can be rewritten as
(

∂

∂r
+ 1

r

)2

Ũ +
[

1

r 2sin2θ
sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+ 1

r 2sin2θ

∂2

∂ϕ2

]

Ũ =
(

−ω2

v2
+ 1

r 2

)

Ũ (θ ,ϕ,r ;ω) ,

(52)

The outward one-way wave equation can be derived from equation (52) as follows:

(

∂

∂r
+ 1

r

)

Ũ (θ ,ϕ,r ;ω) = i
√

α

√

1+ 1

r 2sin2θ

[

sinθ
∂

∂θ

(

sinθ
∂

∂θ

)

+ 1

r 2sin2θ

∂2

∂ϕ2

]

Ũ (θ ,ϕ,r ;ω) ,

(53)

whereα is defined asα = −ω2

v2 + 1
r 2 . Equation (53) can be expanded as

(

∂

∂r
+ 1

r

)

Ũ (θ ,ϕ,r ;ω) = i
√

αŨ (θ ,ϕ,r ;ω)+
ia√

αr 2 sin2θ

[

sinθ ∂
∂θ

(

sinθ ∂
∂θ

)

+ ∂2

∂ϕ2

]

1+ b
αr 2sin2θ

[

sinθ ∂
∂θ

(

sinθ ∂
∂θ

)

+ ∂2

∂ϕ2

]Ũ (θ ,ϕ,r ;ω) ,

(54)



114 Wang SEP–123

wherea andb are the optimal coefficients. Then, equation (54) is split into two equations:

∂

∂r
Ũ (θ ,ϕ,r ;ω) =

(

−1

r
+ i

√
α

)

Ũ (θ ,ϕ,r ;ω) , (55)

{

1+ b

αr 2sin2θ

[

sinθ
∂

∂θ

(

sinθ
∂

∂θ

)

+ ∂2

∂ϕ2

]}

∂

∂r
Ũ (θ ,ϕ,r ;ω)

= ia
√

αr 2sin2θ

[

sinθ
∂

∂θ

(

sinθ
∂

∂θ

)

+ ∂2

∂ϕ2

]

Ũ (θ ,ϕ,r ;ω) . (56)

Obviously, equation (55) can be solved analytically, and equation (56) can be solved by finite-
differences. The finite-difference scheme can be written inthe following form:

[ I − (αθ − iβθ )Tθ ]
[

I −
(

αϕ − iβϕ

)

Tθ

]

Ũn
i , j = [ I − (αθ + iβθ )Tθ ]

[

I −
(

αϕ + iβϕ

)

Tθ

]

Ũn
i , j ,

(57)

whereŨn
i , j =U (i 4θ , j4ϕ,n4r ), αθ = b

r 2α4θ2 , αϕ = b
r 2α4ϕ2 , βθ = a4r

2
√

αr 24θ2 andβϕ = a4r
2
√

αr 24ϕ2 .
The one-way wave extrapolation in the spherical coordinatesystem can be implemented by
solving equation (55) and (57) in the frequency-space domain. The traveltime and amplitude
corresponding to the maximum energy can be picked out in the frequency domain or time do-
main. With the picked traveltime and amplitude, we carried out a 3D integral prestack depth
migration which gave a high-quality imaging result (Huazhong, 2003). This demonstrates
that the method can be used for constructing the Green’s functions in the migration/inversion
imaging.

[2] The matrix expression of linearized migration/inversion

The linearized migration/inversion can be formulated fromthe integral expressed in equation
(15). It can be regarded as an inverse generalized Radon transform. Equation (15) can be
expressed as a matrix equation. The process for solving the equation set is just the migra-
tion/inversion imaging. Following Berkhout (1997), we first give a matrix expression of wave
propagation from a source to a scatterer and then to a receiver:

WU R(θ )WD =









gU
11 gU

12 · · · gU
1P

gU
21 gU

22 · · · gU
2P

. . . . . . . . . . . . . . . . . . . .
gU

M1 gU
M2 · · · gU

M P

















r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q

















gD
11 gD

12 · · · gD
1N

gD
21 gD

22 · · · gD
2N

. . . . . . . . . . . . . . . . . . .
gD

Q1 gD
Q2 · · · gD

QN









,

(58)

whereWU is a discretized Green’s function for upward wave propagation,WD is a discretized
Green’s function for downward wave propagation, andR(θ ) is a reflectivity matrix, which
is related to the incident angle. If the variation of reflectivity with angle is neglected,R(θ )
becomes a diagonal matrix. The reflectivity in this case is assumed to be the normal reflec-
tivity. In practice, the reflectivity of a reflector varies with the incident angle. This is called



SEP–123 Imaging 115

an AVO/AVA phenomenon in seismology. The prestack migration/inversion aims at estimat-
ing the angle reflectivity to evaluate lithological variations. On the other hand, the residual
moveout of the angle reflectivity indicates whether the macro migration/inversion velocity is
reasonable or not. The synthetic wave field can be written as follows:

P (Exr , Exs,ω) =
ZN
∑

iz=Z1

WU R(θ )WD|iz =
ZN
∑

iz=Z1









(

gU rgD
)

11

(

gU rgD
)

12 · · ·
(

gU rgD
)

1N
(

gU rgD
)

21

(

gU rgD
)

22 · · ·
(

gU rgD
)

2N
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(

gU rgD
)

M1

(

gU rgD
)

M2 · · ·
(

gU rgD
)

M N









iz

.

(59)

In equation (59), each element of the matrixP is a recorded seismic trace in the time domain
and a recorded amplitude value for a shot-receiver pair in the frequency domain. Each column
is a shot gather, and each row is a common receiver gather. Therefore, equation (59) can be
regarded as the matrix expression of equation (15). The classical prestack migration can be
formulated as the following:

[

WU (z0,z1)
]H

P (Exr , Exs,z0,ω)
[

WD (z1,z0)
]H = R(z1) . (60)

The detailed matrix expression of equation (60) is








g̃U
11 g̃U

21 · · · g̃U
M1

g̃U
12 g̃U

22 · · · g̃U
M2

. . . . . . . . . . . . . . . . . . .
g̃U

1P g̃U
2P · · · g̃U

M P

















Prs
11 Prs

12 · · · Prs
1N

Prs
21 Prs

22 · · · Prs
2N

. . . . . . . . . . . . . . . . . . . . .
Prs

M1 Prs
M2 · · · Prs

M N

















g̃D
11 g̃D

21 · · · g̃D
Q1

g̃D
12 g̃D

22 · · · g̃D
Q2

. . . . . . . . . . . . . . . . . . .
g̃D

1N g̃D
2N · · · g̃D

QN









=









r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q









, (61)

whereR(z1) is the image of the first layer. In R(z1), each row is an angle gather at an imag-
ing point, and each column is a common angle gather. The multiplication of thepth row in
the matrix

[

WU (z0,z1)
]H

by any column in the matrixP (Exr , Exs,ω) corresponds to a detection

focusing of a shot gather; the multiplication of theqth column in the matrix
[

WD (z1,z0)
]H

by any row in the matrixP (Exr , Exs,ω) corresponds to an emission focusing. Then,the image
of the second layercan be obtained with

[

WU (z0,z2)
]H

P (Exr , Exs,z0,ω)
[

WD (z2,z0)
]H = R(z2) . (62)

Generally,the image of thezi th layer is

[

WU (z0,zi )
]H

P (Exr , Exs,z0,ω)
[

WD (zi ,z0)
]H = R(zi ) . (63)

Here, the matrices
[

WU
]H

and
[

WD
]H

are non-recursive. Otherwise, equation (62) and (63)
will be of the following forms:

[

WU (z1,z2)
]H [

WU (z0,z1)
]H

P (Exr , Exs,z0,ω)
[

WD (z1,z0)
]H [

WD (z2,z1)
]H = R(z2) , (64)
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or
[

WU (z1,z2)
]H

P (Exr , Exs,z1,ω)
[

WD (z2,z1)
]H = R(z2) , (65)

and
[

WU (zi−1,zi )
]H · · ·

[

WU (z0,z1)
]H

P (Exr , Exs,z0,ω)
[

WD (z1,z0)
]H · · ·

[

WD (zi ,zi−1)
]H = R(zi ) ,

(66)

or
[

WU (zi−1,zi )
]H

P (Exr , Exs,zi−1,ω)
[

WD (zi ,zi−1)
]H = R(zi ) . (67)

Defining the cost function as

E (R(θ )) = ‖WU R(θ )WD − P (Exr , Exs,ω)‖2
2 (68)

yields the formula of the linearized migration/inversion:

R(θ ) =
[

WU
]H

P (Exr , Exs,ω)
[

WD
]H

[

WU
]H [

WU
][

WD
][

WD
]H . (69)

The matrix expression of the migration/inversion in equation (69) is








g̃U
11 g̃U

21 · · · g̃U
M1

g̃U
12 g̃U

22 · · · g̃U
M2

. . . . . . . . . . . . . . . . . . .
g̃U

1P g̃U
2P · · · g̃U

M P

















Prs
11 Prs

12 · · · Prs
1N

Prs
21 Prs

22 · · · Prs
2N

. . . . . . . . . . . . . . . . . . . . .
Prs

M1 Prs
M2 · · · Prs

M N

















g̃D
11 g̃D

21 · · · g̃D
Q1

g̃D
12 g̃D

22 · · · g̃D
Q2

. . . . . . . . . . . . . . . . . . .
g̃D

1N g̃D
2N · · · g̃D

QN









[M]

=









r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q









, (70)

where the denominator term [M] is

[M] =









g̃D
11 g̃D

21 · · · g̃D
Q1

g̃D
12 g̃D

22 · · · g̃D
Q2

. . . . . . . . . . . . . . . . . . .
g̃D

1N g̃D
2N · · · g̃D

QN

















g̃U
11 g̃U

21 · · · g̃U
M1

g̃U
12 g̃U

22 · · · g̃U
M2

. . . . . . . . . . . . . . . . . . .
g̃U

1P g̃U
2P · · · g̃U

M P

















gU
11 gU

12 · · · gU
1P

gU
21 gU

22 · · · gU
2P

. . . . . . . . . . . . . . . . . . . .
gU

M1 gU
M2 · · · gU

M P

















gD
11 gD

12 · · · gD
1N

gD
21 gD

22 · · · gD
2N

. . . . . . . . . . . . . . . . . . .
gD

Q1 gD
Q2 · · · gD

QN









. (71)

From equation (61) and (70), the migration/inversion can belocally implemented, because all
elements in the matricesWU ,

[

WU
]H

, WD and
[

WD
]H

relate only to a given layer. If the

matrix
[

WU
]H

is the inverse of the matrixWU , it can be expressed as

[

WU ]H
WU = E, (72)
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where the matrixE is an identity matrix. Similarly, if the matrix
[

WD
]H

is the inverse of the
matrix WD, we have

WD [WD]H = E. (73)

In practice,
[

WU
]H

and
[

WD
]H

are the conjugates ofWU andWD respectively. Therefore,
the matrix [M] is a band-width-limited diagonal matrix. The velocity structure and the acqui-
sition geometry affect the inner structure of the matrix. Infact, M is a Hessian which will be
discussed in detail later.

[3] The meaning and calculation of∇ f (δm) and ∇2 f (δm)

The iterative formula of the least-squares migration/inversion is:

δm(k+1) = δm(k) − H k+1∇ f
(

δm(k)) , (74)

whereH k+1 is the inverse of the Hessian. The first-order derivative∇ f
(

δm(k)
)

of the cost
function with respect to the medium parameters is

∇ f (δm) = 2AH (Aδm − δdobs) . (75)

If the residual wavefield is defined as

Presidual = Aδm − δdobs, (76)

and equation (75) is rewritten as

∇ f (δm) = 2AH Presidual, (77)

then the first-order derivative means that the residual wavefield is back-propagated. It is further
equivalent to the classical prestack migration if the parameter disturbanceδm is set to zero at
the first iteration. The residual wavefieldPresidual belongs to the data spaceD (Exr , Exs, t), and
∇ f (δm) pertains to the image spaceI (Ex). Calculating the first-order derivative requires one-
time modelingAδm, which can be implemented by a prestack demigration, and one-time
classical prestack migration of 2AH Presidual:

∇ f (δm) = 2









g̃U
11 g̃U

21 · · · g̃U
M1

g̃U
12 g̃U

22 · · · g̃U
M2

. . . . . . . . . . . . . . . . . . .
g̃U

1P g̃U
2P · · · g̃U

M P

















Presidual−rs
11 Presidual−rs

12 · · · Presidual−rs
1N

Presidual−rs
21 Presidual−rs

22 · · · Presidual−rs
2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Presidual−rs

M1 Presidual−rs
M2 · · · Presidual−rs

M N

















g̃D
11 g̃D

21 · · · g̃D
Q1

g̃D
12 g̃D

22 · · · g̃D
Q2

. . . . . . . . . . . . . . . . . . .
g̃D

1N g̃D
2N · · · g̃D

QN









. (78)
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In the first iterative step,δm = 0, equation (78) is rewritten as

∇ f (δm) = −2









g̃U
11 g̃U

21 · · · g̃U
M1

g̃U
12 g̃U

22 · · · g̃U
M2

. . . . . . . . . . . . . . . . . . .
g̃U

1P g̃U
2P · · · g̃U

M P

















δdobs−rs
11 δdobs−rs

12 · · · δdobs−rs
1N

δbobs−rs
21 δdobs−rs

22 · · · δdobs−rs
2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δdobs−rs

M1 δdobs−rs
M2 · · · δdobs−rs

M N

















g̃D
11 g̃D

21 · · · g̃D
Q1

g̃D
12 g̃D

22 · · · g̃D
Q2

. . . . . . . . . . . . . . . . . . .
g̃D

1N g̃D
2N · · · g̃D

QN









= −2









r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q









. (79)

The Hessian is the second-order derivative of the cost function with respect to the medium
parameters. It is of the following form:

∇2 f (δm) = 2AH A. (80)

In the least-squares migration/inversion, the Hessian is adeconvolution operator. It is used
for de-blurring the image of the classical prestack migration. Physically, the Hessian is an
indicator of the illumination. The energy of the wave propagating through a certain medium
is expressed as follows:

E (δm) = ‖δd‖2 = δdHδd = δmH AH Aδm =
[

WD]H
[δm]H [WU ]H [

WU ] [δm]
[

WD] .
(81)

For a given layer and from the modeling equation (58), equation (81) can be rewritten as

E (δm) =









gD
11 gD

12 · · · gD
1N

gD
21 gD

22 · · · gD
2N

. . . . . . . . . . . . . . . . . . .
gD

Q1 gD
Q2 · · · gD

QN









H 







r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q









H 







gU
11 gU

12 · · · gU
1P

gU
21 gU

22 · · · gU
2P

. . . . . . . . . . . . . . . . . . . .
gU

M1 gU
M2 · · · gU

M P









H









gU
11 gU

12 · · · gU
1P

gU
21 gU

22 · · · gU
2P

. . . . . . . . . . . . . . . . . . . .
gU

M1 gU
M2 · · · gU

M P

















r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q

















gD
11 gD

12 · · · gD
1N

gD
21 gD

22 · · · gD
2N

. . . . . . . . . . . . . . . . . . .
gD

Q1 gD
Q2 · · · gD

QN









. (82)

Clearly, for a horizontal reflector with an even reflectivityand only the zero-offset reflectivity
considered,AH A determines the energy of the wave which propagates to the layer. Equation
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(82) can be rewritten as follows:

AH A =
[

WD]H [
WU ]H [

WU ][WD]

=









gD
11 gD

12 · · · gD
1N

gD
21 gD

22 · · · gD
2N

. . . . . . . . . . . . . . . . . . .
gD

Q1 gD
Q2 · · · gD

QN









H 







gU
11 gU

12 · · · gU
1P

gU
21 gU

22 · · · gU
2P

. . . . . . . . . . . . . . . . . . . .
gU

M1 gU
M2 · · · gU

M P









H









gU
11 gU

12 · · · gU
1P

gU
21 gU

22 · · · gU
2P

. . . . . . . . . . . . . . . . . . . .
gU

M1 gU
M2 · · · gU

M P

















gD
11 gD

12 · · · gD
1N

gD
21 gD

22 · · · gD
2N

. . . . . . . . . . . . . . . . . . .
gD

Q1 gD
Q2 · · · gD

QN









=









g̃D
11 g̃D

21 · · · g̃D
Q1

g̃D
12 g̃D

22 · · · g̃D
Q2

. . . . . . . . . . . . . . . . . . .
g̃D

1N g̃D
2N · · · g̃D

QN
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M P
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12 · · · gU
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gU
21 gU

22 · · · gU
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The row in the matrix
[

WU
]H

multiplied by the column of the matrix
[

WU
]

and the row in

the matrix
[

WD
]

multiplied by the column of the matrix
[

WD
]H

are the cross-correlation
between the conjugate of the Green’s function and the Green’s function at different receiver
or shot positions respectively. The auto-correlation has apeak value, and the cross-correlation
decreases rapidly as the distance increases between the receiver and shot positions. The auto-
correlation values are on the diagonal. Therefore, the Hessian is a band-width-limited diagonal
matrix. Its inverse is also a kind of band-width-limited diagonal matrix. In the extreme case,
where only the elements on the diagonal of the Hessian are left, with non-diagonal set to
zero, the elements on the diagonal of the inverse of the Hessian are the reciprocals of the
elements on the diagonal of the Hessian. Therefore, the inverse of the Hessian plays the role
of decreasing strong illumination and enhancing poor illumination. The Hessian itself reflects
the illumination of each imaging point. The matrix expression of migration/inversion can be
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summarized as follows:
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. (84)

Substituting the residual imaging matrix into equation (84), it can be rewritten as follows:
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. (85)

With the quasi-Newton conditionp(k) = Hk+1q(k), andp(k) = δmk −δm(k+1), q(k) =∇ f
(

δm(k+1)
)

−
∇ f

(

δm(k)
)

, the DFP algorithm for calculating the inverse of the Hessian matrix is

H DF P
k+1 = Hk + p(k)

(

p(k)
)T

(

p(k)
)T q(k)

−
(

Hkq(k)
)(

Hkq(k)
)T

(

qk
)T

Hkq(k)
, (86)
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where

p(k) =









r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q
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(87)

and

q(k) =
[

2AH Presidual]k+1 −
[

2AH Presidual]k

=
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P Q









k

, (88)

wherer residual
i j is the image with the residual wavefield.

[4] Analysis of some factors that influence imaging

It is worthwhile to analyze the factors which affect the imaging quality and how they do so. We
list four main factors: (1) too coarse sampling, (2) uneven sampling intervals or missing data,
(3) illumination deficiency, (4) migration operator. All these factors will slow the convergence
of iterative migration/inversion algorithms. It is obvious that too coarse sampling produces
aliasing. Fig.5 demonstrates that uneven sampling intervals or missing data will cause imaging
noise. Because the reflections from the vicinity of a reflecting point can not cancel each other,
imaging noise appears. The illumination greatly affects the imaging quality in the case of a
complex medium. From the view of the Radon transform and its inverse, if the seismic data set
is band-width-unlimited, and the acquisition geometry is continuously distributed around an
object body, the object can be uniquely restored with the inverse of the Radon transform. This
is theoretically true. According to ray theory tomography,if rays are missing which should
pass through the region of interest, the image of the region will be blurred. In fact, this is an
amplitude distortion of the image. Therefore, the true medium parameters can never be re-
covered from real seismic data. The possibility of relativetrue-amplitude imaging is analyzed
later. Propagators describe wave propagation in the background medium. Given the seis-
mic data and the background parameters, only the propagators affect the iterative algorithms.
Propagators should characterize wave propagation as accurately as possible. However, com-
monly used propagators are not so accurate and many wave phenomena are neglected. This
can cause amplitude and phase distortion, as well as errors in Hessian calculation. Further,
these will slow down the convergence of migration/inversion.
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[5] The imaging gather of migration/inversion

Equation (84) or (85) gives the imaging matrix:








r11 r12 · · · r1Q

r21 r22 · · · r2Q

. . . . . . . . . . . . . . . . . .
r P1 r P2 · · · r P Q









P×Q

, (89)

whereP is the number of scatterers andQ is the number of incident angles for a scatterer.
A row of the reflectivity matrix is an angle gather. However, the angle is not evenly sampled
in a constant angle interval in complex medium. Physically,a reflection point or scatterer is
not illuminated with a constant incident angle interval; mathematically, an angle gather evenly
sampled with a constant angle interval for the point can be yielded with Fourier transform ap-
proaches. Weglein and Stolt (1999) and Sava and Fomel (2003)gave an approach for creating
the angle gathers from the imaged data set. However, in our mind, we should know the dif-
ference. The uneven-incident-angle illumination will cause imaging noises. And this will also
cause amplitude distortions in angle gathers. Fig.5 shows that a reflection point or scatterer is
not illuminated with a constant incident angle interval.

P

Reflector

Surface

Figure 5: the illumination with the uneven incident angleshuazhong1-even_incident_angle
[CR]

[6] The resolution of migration/inversion

To understand which factors influence the resolution of the migration/inversion, we analyze
the following matrices:

{

[

WU ]H [
WU ]

}−1{
[

WU ]H [
WU ]

}

[R(θ )]
{

[

WD]H [
WD]

}{

[

WD]H [
WD]

}−1
. (90)

Ideally, all the matrices
{

[

WU
]H [

WU
]

}−1
,
{

[

WU
]H [

WU
]

}

,
{

[

WD
]H [

WD
]

}

and
{

[

WD
]H [

WD
]

}−1

are the identity matrixE, and at this time the image [R(θ )] is of the highest resolution. From
ray theory tomography, resolution is closely related to acquisition aperture. The larger the
aperture, the higher the resolution. If the matrices in equation (90) are required to be an
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identity, besides the aperture, the spatial and temporal sampling and the propagator also have
obvious effects. Theoretically, the Hessian blurs the trueimage of reflectivity, and the inverse
of the Hessian deblurs the blurred image. In practice, the calculation of the Hessian is affected
by many factors. As a result, the imaging quality is not improved distinctly.

[7] The regularization of the migration/inversion algorit hms

In probability theory, the cost function is defined as (Tarantola, 1984)

2S(m) = (g(m)−dobs)
T C−1

D (g(m)−dobs)+
(

m−mprior
)

C−1
M

(

m−mprior
)

(91)

whereCD andCM are the covariance matrices for the data sets and models respectively. It is
relatively easy to analyze the role of the covariance matrixCM . The second term of equation
(91) can be expressed in the following matrix form:

(

m1 m2 m3 · · · mN
)



















c11 c12 c13 · · · c1N

c21 c22 c23 · · · c2N
...

...
...

. . .
...

cN1 cN2 cN3 · · · cN N

































m1

m2

m3
...

mN















. (92)

The vectorm − mprior represents a stochastic process. The covariance matrixCM stands for
the linear relation of the stochastic process at two different times. If the value of the covariance
is very small, the stochastic process at the two different times changes a little. Therefore, the
uncertainty of the stochastic process is also low. Small values are chosen for the elements in
the matrixCM if we have enough a priori information of the model. The similarity between
two images produced by two successive iterative migration/inversion steps are used to generate
the covariance matrix. The correlation coefficients of the two images can be used to fill the
covariance matrixCM . Of course, the reciprocal of the correlation coefficients of the two
images can be used to fill the covariance matrixC−1

M . The local singular values (from SVD)
of an image reflect the local continuity of an event, which canbe used for constraints.

[8] The convergence of the iterative migration/inversion

Again, the iterative formula for migration/inversion imaging is

δm(k+1) = δm(k) − H k+1∇ f
(

δm(k)) . (93)

The choice of background parameters and the method for linearizing the propagators de-
termine whether the cost function is (or approaches) a quadratic function. Therefore, the
Born approximation should be replaced by De Wolf approximation or other more accurate
approximations. On the other hand, to produce the image at the first iterative step with the
so-called true-amplitude imaging approaches will accelerate the convergence of the iterative
migration/inversion.
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THE POSSIBILITY OF RELATIVE TRUE-AMPLITUDE IMAGING

Beylkin (1985) gave a formula for estimating the (locationsof) discontinuities of the unknown
function describing the medium, rather than for estimatingthe function itself. The generalized
back-projection operatorR∗ dual to the generalized Radon transformR is defined as

(

R∗u
)

(y) =
∫

∂ X
u (t ,ξ ) |t=φ(y,ξ ,η)b(y,ξ )dξ , (94)

whereb(y,ξ ) ∈ C∞ (X × ∂ X) is a weighting function which is a smooth, non-negative func-
tion on X × ∂ X. It is defined as

b(y,ξ ) = h (y,ξ )

a(y,ξ )
χ (y,ξ ) , (95)

whereh (y,ξ ) is a Jacobian determinant,χ (y,ξ ) is a cut-off function,u (t ,ξ ) can be regarded
as a generalized projection, which is the observed scattered wavefield on the surface. With the
help of a Fourier integral operator (FIO), the following formula can be obtained:

(

I∂ X0
η

f

)

(y) = 1

8π3

∫

�η(y)
e−ip·y f ∧ (p)dp, (96)

wherep = k∇yφ (y,ξ ,η), which is the direction normal to the reflector at the imaging point.
∂ X0

η is the limited aperture on the surface, and�η (y) is the corresponding limited aperture near
the imaging point. Andf ∧ (p) is the Fourier transform of the object function. FromTheorem
1 in Beylkin (1985), the inverse transform of the Fourier transform of the object function,
(

I∂ X0
η

f

)

(y), approximately equals the generalized back-projection defined by equation (94).

Clearly, if the observation aperture∂ X0
η or �η (y) is unlimited, the discontinuities of the object

function can be accurately estimated with equation (94) under some assumptions. That is to
say, true-amplitude imaging can be theoretically implemented under some conditions. Here,
we point that the relative true-amplitude imaging can be obtained in practice even though the
observation aperture is always limited. Equation (96) can be considered as a summation. If the
distribution of the Fourier transform of the object function on�η (y) is even, and the range of
the distribution is the same at every imaging point (or scattering point), the summation will be
same. Even though the summation is not the true estimation for the discontinuities of the object
function, the relative relation among these discontinuities at each imaging point is correct.
This is the essence of the relative true-amplitude imaging or true-amplitude imaging. What
prevent relative true-amplitude imaging? Missing data andlimited aperture are the two main
factors, assuming that the the back-projection operator issuitable. Beylkin (1985); Bleistein
and Stockwell (2001); Zhang (2004) discussed how to construct a suitable back-projection
operator or true-amplitude imaging operator. From the above point, we can further understand
the meaning of the illumination analysis. The objective of the illumination analysis is to
make clear how to map the observations on∂ X0

η to �η (y). If, on �η (y), the distribution of
the Fourier transform of the object function is even, and therange of the distribution is the
same at every imaging point (or scattering point), then relative true-amplitude imaging can be
achieved. It is worth to point out that the distribution should be symmetrical about the normal
to the reflector at the imaging point.
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V 1

V 2

P 1 P 2 P 3

Figure 6: the possibility interpretation of the relative true-amplitude imaging in the case of
simple medium structure.huazhong1-true_amplitude_and_illumination[CR]
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V 4

V 3

V 5

P1

P2

P3

Figure 7: the possibility interpretation of the relative true-amplitude imaging in the case of
complex medium structure.huazhong1-true_amplitude_and_illum22[CR]
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CONCLUSION AND DISCUSSION

Comparing non-iterative linearized migration/inversion, iterative linearized migration/inversion,
and nonlinear waveform inversion, linearized migration/inversion has been carefully reviewed.
The following statements reflect my opinions about linearized migration/inversion.

(1) There exists a paradox: linearized migration/inversion requires that the background ve-
locity is as close as possible to the true velocity distribution; however the Born approximation
needs a very smooth background velocity, so that the incident wavefield only includes down-
ward propagating waves. The Born approximation is not a goodlinearization method and it
should be replaced by more accurate approximations, such asDe Wolf approximation.

(2) In essence, non-iterative linearized migration/inversion, iterative linearized migration/inversion,
and nonlinear waveform inversion, are all inverse scattering imaging methods.

(3) Relative true-amplitude imaging is possible, the condition is that the distribution of the
Fourier transform of the object function on�η (y) is even, and the range of the distribution is
the same at every imaging point (or scattering point).

(4) The Hessian matrix is band-limited and its inverse is also band-limited, its inner struc-
ture has close relation with the complexity of the velocity and the acquisition geometry. It
reflects the energy illuminating imaging points.
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