next up previous print clean
Next: About this document ... Up: Biondi: RMO in anisotropic Previous: Independence of depth perturbations

Derivatives of VTI slowness function with respect to the perturbation parameters

In this Appendix I present the analytical expressions for the derivatives of the group slowness function with respect to the velocity-perturbation parameters $\left(\rho_V_V,\rho_V_H,\rho_V_N\right)$.These derivatives depend on the particular form chosen to approximate the slowness function. In this paper I use following approximation of the VTI slowness function Fowler (2003):
   \begin{eqnarray}
S^2_{\rm VTI}\left(\theta\right)
&=&
\frac
{
{S_V}^2\cos^2 \the...
 ...ht)
+
{S_V}^2\left({S_N}^2-{S_H}^2\right)
\sin^2 2 \theta
}
}
{2},\end{eqnarray}
(36)
where
\begin{displaymath}
S^2_{\rm Ell}\left(\theta\right)
=
{S_V}^2\cos^2 \theta+ {S_H}^2\sin^2 \theta\end{displaymath} (37)
is the elliptical component.

The derivatives are then written as:
\begin{eqnarray}
\left.
\frac{\partial S_{\rm VTI}\left(\theta\right)}{\partial ...
 ...\right)
+
{S_V}^2\left({S_N}^2-{S_H}^2\right)
\sin^2 2 \theta
}
},\end{eqnarray} (38)
(39)
(40)
where the derivatives of the elliptical component with respect to $\rho_V_V$ and $\rho_V_H$ are:
(41)
(42)

 


next up previous print clean
Next: About this document ... Up: Biondi: RMO in anisotropic Previous: Independence of depth perturbations
Stanford Exploration Project
11/1/2005