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Geomechanical analysiswith rigorouserror estimatesfor a
double-porosity reservoir model

James G. Berryman

ABSTRACT

A model of random polycrystals of porous laminates is inticet to provide a means
for studying geomechanical properties of double-poragervoirs having one class g
possible microstructures. Calculations on the resultarghereservoir model can procee
semi-analytically for studies of either the poroelastictransport coefficients, but the
poroelastic coefficients are emphasized here. Rigorousdsoof the Hashin-Shtrikman
type provide estimates of overall bulk and shear moduli, taedeby also provide rigor-
ous error estimates for geomechanical constants obtaioedup-scaling based on a self
consistent effective medium method. The influence of hid@empresumed unknown)
microstructure on the final results can then be evaluatedtgatvely. Detailed descrip-
tions of the use of the model and some numerical examplesisdwypical results for
the double-porosity poroelastic coefficients for the typbeierogeneous reservoir being
considered are presented.

o= ¢

INTRODUCTION

Rapid progress in development of rigorous bounding metfmd®saterial coefficients in het-
erogeneous media (Milton, 2002; Torquato, 2002) has beeateroger the last fifty years.
Effective medium theory, although very useful in many piadtcircumstances, nevertheless
has not made such rapid progress. So a question that nptarsks is whether it might be
possible to construct new effective medium formulas diyecom the known bounds? Skep-
tics will immediately ask: Why do | need to do this at all if bals are available? But the
answer to this question is most apparent in poromechaniosterthe bounds are frequently
too far apart to be of much use in engineering and, espedialield applications. Hill (1952)
was actually the first to try constructing estimates fromrusu First he showed that the
Voigt (1928) and Reuss (1929) averages/estimates in @tgistiere in fact upper and lower
bounds, respectively, on stiffness. Then he proceededygesti that estimates of reasonable
accuracy were given by the arithmetic or geometric mearsirmdd by averaging these two
bounds together. Thus, the Voigt-Reuss-Hill estimatesevibarn. Better bounds than the
Voigt and Reuss bounds are now known and no doubt some ati¢oygdate Hill's approach
have been made. However, to make a direct connection tditnaali approaches of effec-
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tive medium theory, | apply a more technical procedure hererder to obtain estimates of
up-scaled constants using the known analytical structutteedoounds, especially for Hashin-
Shtrikman (1962) bounds. When this mathematical strugsunet known — as might be the
case if the bounds are expressed algorithmically rather dissanalytical formulas — then |
will see that it proves very worthwhile to expend the addiéibeffort required to determine
this structure. Whenever it is possible to carry the analftgither than has been done in the
published literature, a self-consistent effective mediarmula is fairly straightforward to ob-
tain from the resulting expressions. The self-consistezdiptions then lie within the bounds,
as might be desired and expected. In the next section, otieydar class of double-porosity
models (Berryman, 2002; Berryman and Pride, 2002) is censd [Other classes of models
with different microstructures many also be of interest aoohe of these have also been dis-
cussed in previous work (Berryman, and Wang, 1995; Berryam&hPride, 2002), but other
microstructures generally have less analytical strudtuecan be exploited, so unfortunately
much less detailed information can be obtained about theskeisifrom analysis alone.] Re-
sults from double-porosity geomechanics analysis areepted. These results are general (for
the model under consideration), and do not depend explmitigenerally unknown details of
the spatial arrangement or microstructure of the poroustdaents. Microstructure enters
these formulas only through the overall drained bulk mosilfi. Then, in the following sec-
tion, a preferred model microstructure — that of a localjjeleed medium — is imposed. This
microstructure has the advantage that it forms hexagonaigosversely isotropic) “crystals”
locally. Then, if | assume these crystals, or grains, arebjechtogether randomly so as to
form an overall isotropic medium, | have the “random polgtay of porous laminates” reser-
voir model. Hashin-Shtrikman bounds are known for such qgyistals composed of grains
having hexagonal symmetry. So bounds are easily found. Fnenform of the bounds, |
also obtain estimates of both overall bulk modulus and smeaiulus (Berryman, 2005), thus
completing the semi-analytical poromechanics model. Tired fivo sections show examples,
and summarize my results. Although the language | use heds te emphasize the analogy
to polycrystals of laminates, the reader should keep in rtfiatithe equations of elasticity —
and for present purposes (I do not treat permeability hdse)the equations of poroelasticity
— are scale invariant. So the mathematics is the same whighéayering | are considering
takes place at the scale of microns, meters, or kilometeosveder, there is an obvious but
implicit limitation that the scale considered cannot bemsalsthat the continuum hypothesis
fails to be valid.

DOUBLE-POROSITY GEOMECHANICS

The main results used here can be derived using uniform eigaror self-similar, methods

analogous to ideas used in thermoelasticity by Cribb (1868)in single-porosity poroelas-
ticity by Berryman and Milton (1991). Cribb’s method proedia simpler and more intuitive

derivation of Levin’s earlier results on thermoelasticaxgion coefficients (Levin, 1967). Our
results also provide a simpler derivation of results oladiby Berryman and Pride (2002) for
the double-porosity coefficients. Related methods in adpefications to micromechanics are
called “the theory of uniform fields” by some authors (Dvoeaid Benveniste, 1997). First
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assume two distinct phases at the macroscopic level: a ponatrix phase with the effective
propertiesKél), ijl), Kr(nl), #® (which are drained bulk and shear moduli, grain or mineral
bulk modulus, and porosity of phase 1 with analogous defimétifor phase 2), occupying
volume fractionvV® /v = v(@ of the total volume and a macroscopic crack or joint phase
occupying the remaining fraction of the volunwé?/V = v® = 1— v, The key feature
distinguishing the two phases — and therefore requirirgdhialysis — is the very high fluid
permeability of the crack or joint phase and the relativelydr permeability (but higher fluid
volume content) of the matrix phase. In the double-porositydel, there are three dis-

Figure 1: Schematic of the ran-
dom polycrystals of laminates model.
jim1-laminated_poly_I12[NR]
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that illustrates how each one of the © o
grains is composed of two very dif- O /
ferent types of porous materials: one O

being a storage material (high poros- /
ity and low permeability) and one a
transport material (low porosity and O
high permeability). jim1-doublepot
INR]

Figure 2: Blowup showing a detalil O/ O
O
Wi

tinct pressures: confining pressum, pore-fluid pressurépfcl) [for the storage porosity], and

joint-fluid pressurépfcz) [for the transport porosity]. (See Figures 1 and 2.) Tregadm,apﬁl),
andépfcz) as the independent variables in our double porosity thealgfine the dependent
variablesse=8V/V, s¢W = (8V¢§1) —sviy/v, andsc®@ = (8V¢§2) —5V?)/Vv, which are
respectively the total volume dilatation, the incrementlofd content in the matrix phase,
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and the increment of fluid content in the joints. The fluid ia thatrix is the same as that in
the cracks or joints, but the two fluid regions may be in déferstates of average stress and,
therefore, need to be distinguished by their respectiversgppts. Linear relations among
strain, fluid content, and pressure take the symmetric form

ée aip a2 a1z —6 Pc
_sr@ ]| = _sp® 1
8¢ =1 a2 ax az Pt , 1)
—5¢@ a13 a3 as3 —spt?

following Berryman and Wang (1995) and Lewallen and Wan®8)9It is easy to check that
a;1 = 1/Kj, whereK} is the overall drained bulk modulus of the system. | now finalyrcal
expressions for the remaining five constants for a binarypasite system. The components
of the system are themselves porous materials 1 and 2, Hduiseassumed to be what | call a
“Gassmann material” satisfying

se® 1 1 —a® —sp )
( _5c @ /y® ) = @( —a® ¢®/B® ) —_spW® (2)

for material 1 and a similar expression for material 2. The genstants appearing on the
right are the drained bulk modulw@él) of material 1, the corresponding Biot-Willis (Biot and
Willis, 1957) coefficienix®, and the Skempton (1954) coefficig®t?). The volume fraction
v\D) appears here in order to correct for the difference betweglolml fluid content and the
corresponding local variable for material 1. The main spleciharacteristic of a Gassmann
(1951) porous material is that it is composed of only one typsolid constituent, so it is
“microhomogeneous” in its solid component, and in additiba porosity is randomly, but
fairly uniformly, distributed so there is a well-defined stent porosityp?) associated with
material 1, etc. To proceed further, | ask this question:t [sossible to find combinations
of dpc = Sp((;l) = 8p((;2), 8p$1), and 8p§2) so that the expansion or contraction of the system
is spatially uniform or self-similar? Or equivalently, cafind uniform confining pressure
5pc, and pore-fluid pressure?s)fcl) and 8p$2), so that all these scalar conditions can be met
simultaneously? If so, then results for system constantdeaobtained purely algebraically
without ever having to solve equilibrium equations of thecimanics. | initially setsp. =
Sp((;l) = 8p((;2), as this condition of uniform confining pressure is clearhgquirement for the
self-similar thought experiment to be a valid solution @éss equilibrium equations. So, the
first condition to be considered is the equality of the sgaihthe two constituents:

1 1 1 2
se = ——=(8pc —aWsp) = 66@ = ——(5pc — «P5p?). ©)
Kd Kd
If this condition is satisfied, then the two constituentsexganding or contracting at the same
rate and it is clear that self-similarity prevails, since
se=vMse® +@s5e@ = sel) = 56 (4)

If I imagine thatsp. andapgl) are fixed, then | need an appropriate valuém)(,la), so that (3)
is satisfied. This requires that

2 1 2
1-KP/Kg e ®KP )

2 _ ¢n@ 1y _
8pf —‘Spf (‘SpC18pf )— 05(2) pC Ol(z)Kél)(Spf ’ (5)
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showing that, for undrained condition&p](cz) can almost always be chosen so the uniform

expansion takes place. Using (5), | now eliminmg) from the remaining equality so
1
je=— [3115 Pe +a128pt" + a135pP(s pc,(Spgcl))} =sell) = — @ [8 pe — a8 pﬁ”] , (6)
d

Wherespfcz)(Spc,Spﬁl)) is given by (5). Making the substitution and then notingt #@ and

(Spscl) were chosen independently and arbitrarily, | find the résgltoefficients must each

vanish. The two equations | obtain are
as+a13(1-KP/K) /a® = 1/K ) (7)
and
a2+ a3 (aﬂ)KgZ)/a(Z)Kg”) = —a®/KP. 8)

Sinceas; is assumed to be known, (7) can be solved directly, giving

arge 2 ( 1-Kg)/K; ) )
183= "7 1 2 |-
<@\

Similarly, with a;3 known, substituting into (8) gives

o® (1-KP/K;
ajp = — . (20)
<P\ KPRD

So, formulas for three of the six coefficients are now knowiis¢, note the similarity of the
formulas (9) and (10),e., interchanging indices 1 and 2 on the right hand sides také&®m
one expression to the other.] To evaluate the remainindiciefts, | consider what happens
to fluid increments during the self-similar expansion. atrenly material 1, but the equations
for material 2 are completely analogous. From the preceelinamtions,

@)

v

3;'(1) = 2128 e +8.228p$c1) +61238p$<2)(3pc,8p$1)) — W I:_a(l)spc + (a(l)/B(l))8p$1)j| . (12)
d

Again substituting for(Spgz)((Spc,(Spgl)) from (5) and noting that the resulting equation con-

tains arbitrary values afpc andapﬁl), the coefficients of these terms must vanish separately.
Resulting equations are

aio+ax3(l— Kéz)/ Kél))/(x(z) = —a(l)v(l)/ Kél), (12)
and

02+ a3 (a(l) K@ /a@)Kgl)) =oMy@W/BWK D, (13)



166 Berryman SEP-123

Solving these equations, | obtain

KPKPaWa@ [ @ @ 1
oz = 2 0 5 K(l) + K(Z) - W ) (14)
and
2
. D@ o@ @ .\ 2@ 1 as)
Do = — ——.
BOK® \1-k{/kP ) | kP kP Ki

Performing the corresponding calculation B produces formulas foaz, andags. Since
(14) is already symmetric in component indices, the fornfataag, provides nothing new.
The formula forazs is easily seen to be identical in form ®,, but indices 1 and 2 are
interchanged. Formulas for all five of the nontrivial coeéfits of double porosity have now
been determined. These results also show how the condtjiugpertiesKq, «, B up-scale
at the macrolevel for a two-constituent composite (Bermyraad Wang, 1995; Berryman and
Pride, 2002). | find

Captas oOKG-KP)+a@KP K

- (16)
a1 K§ -k
and
1 apt 2823+ a33 (17)
B alpt+ayz

Note that all the important formulas [(8),(9),(11)-(14@mend on the overall drained bulk
modulusKj of the system. So far this quantity is unknown and therefoustrstill be de-
termined independently either by experiment or by anothafygéical method. It should also
be clear that some parts (but not all) of the preceding aisadyeralize to the multi-porosity
problem {.e., more than two porosity types). A discussion of the issua®anding solvability
of the multiporosity problem has been presented elsewBay(man, 2002).

UP-SCALING MODEL FOR GEOMECHANICS OF RESERVOIRS

Elasticity of layered materialslext, to determine the overall drained (or undrained) buii a
shear moduli of the reservoir, assume a typical buildinglblaf the random system is a small
(relative to the size of the reservoir) “grain” of laminataterial whose elastic response for a
transversely isotropic (hexagonal) system can be destlimally by:

011 C11 Ci12 Ci13 €11

022 Ci2 C11 Ci13 €22

033 | _ C13 C13 Cz3 €33 (18)
023 2C44 es |’

031 2C44 €31

012 2066 €12
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whereoij are the usual stress componentsifgr= 1 — 3 in Cartesian coordinates, with 3
(or z) being the axis of symmetry (the lamination direction foclsa layered material). Dis-
placemenu; is then related to strain componest by e = (du;/dx; +du;/9x%i)/2. This
definition introduces some convenient factors of two in®4#, 55, 66 components of the ma-
trix of stiffness coefficients shown in (18). For definitesi¢slso assume that the matrix of
stiffness coefficients in (18) arises from the laminatiomMNasotropic constituents having bulk
and shear moduKp, un, in the N > 1 layers present in each building block. It is important
that the thicknessa$, always be in the same proportion in each of these laminatezrks)] so
that f, =dn/ ) _,, dv. But the order in which layers were added to the blocks ismpbirtant,
as Backus’s formulas (Backus, 1962) for the constants shonthe overall quasistatic (long
wavelength) behavior of the system | am studying, Backuessilis [also see Postma (1955),
Berryman (1998; 2004b), Milton (2002)] state that

-1

_ 1 _ K—2u/3
CSS_(W) ) Ciz= C33<K+4u/3>'
-1
Ca4 = <%> , Ce6 = (1) , (19)

2 2
Ci11= % +4Cee—4<#u/3>, C12 = C11 — 2Ce6.

This bracket notation can be correctly viewed as a line nalegiong the symmetry axiss.

The bulk modulusK, and shear modulug, displayed in these averages can be either the
drained or the undrained moduli for the individual layersor he undrained case, the re-
sults are inherently assumed either to apply at very higlueacies, such as ultrasonic fre-
guencies in laboratory experiments, or to situations whezach layer is physically isolated
so that fluid increments cannot move from one porous layeheonext. The bulk modu-
lus for each laminated grain is that given by the compressi®euss averag&r of the
corresponding compliance matrsg [the inverse of the usual stiffness matgy, whose
nonzero components are shown in (18)]. The resuitdse;1 + e+ €33 = o/Keff, Where
1/Keff = 1/KRr = 2511+ 2512+ 4513+ S33. Even thoughKes = KR is the same for every grain,
since the grains themselves are not isotropic, the ovaridihodulusk * of the random poly-
crystal does not necessarily have the same valuéggfr the individual grains (Hill, 1952).
Hashin-Shtrikman bounds d&* for random polycrystals whose grains have hexagonal sym-
metry (Peselnick and Meister, 1965; Watt and PeselnickQ)L98ow in fact that th& g value

lies outside the bounds in many situations (Berryman, 20Bdjinds for random polycrystals

\oigt and Reuss bounds: hexagonal symmdtoy hexagonal symmetry, the nonzero stiffness
constants areci1, Ci2, C13 = C23, C33, C44 = Cs5, andcgs = (C11 — C12)/2. The Voigt (1928)
average for bulk modulus of hexagonal systems is well-kntonre

Kv = [2(C11+ C12) +4C13+C33] /9. (20)

Similarly, for the overall shear modul@*, | have

1
Gy = E (Gés + 2Caa+ 2Cg6) , (21)

where the new term appearing here is essentially definedlya(®l given explicitly by

Gegr = (C11+ C33 — 2C13— Cee) /3. (22)
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The quantityG is the energy per unit volume in a grain when a “pure uniaxiabs”strain

of unit magnitudeile., (e11, €2, €33) = (1,1,—2)/+/6], whose main compressive strain is ap-
plied to the grain along its axis of symmetry (Berryman, 2802004b). Note that the concept
of “pure uniaxial shear” strain (or stress) is based on theepkation that if a uniaxial princi-
pal strain (or stress) of magnitude 3 is applied along thensgtry axis, it can be decomposed
according to (0,0,3)= (1,1, 1) —(1,1,—2)" into a pure compression and a pure shear con-
tribution, which is then called for the sake of brevity thaifp uniaxial shear.” The Reuss
(1929) averag& r for bulk modulus can also be written in terms of stiffnessftoients as

1 1 1
= + :
Kr—C13 C€11—Cse—C13 C33—C13

(23)

The Reuss average for shear is

1/1 2 2\71*
GR:|:—<—r+—+—)] : (24)
S\ Ggr Caa  Ces

that definesG; —i.e., the energy per unit volume in a grain when a pure uniaxishssteess

of unit magnitudeife., (o11,022,033) = (1,1,—2)/+/6], whose main compressive pressure is
applied to a grain along its axis of symmetry. For each grawirig hexagonal symmetry,
two product formulas found by Berryman (2004a) holK 852« = 3Ky Gz = wiw_/2 =
C33(C11 — Ce6) — cfs. The symbolsy, stand for the quasi-compressional and quasi-uniaxial-
shear eigenvalues for the crystalline grains. Thus, ibWed that

is a general formula, true for hexagonal symmetrashin-Shtrikman bounddt has been
shown elsewhere (Berryman, 2004a; 2004b) that the Pekelfetster-Watt (Peselnick and
Meister, 1965; Watt and Peselnick, 1980) bounds for bulk uhglof a random polycrystal
composed of hexagonal (or transversely isotropic) graiegaen by

Kv(Geg+¢x)  KrGeg+ Kvix

KL = =
P (Gegt ) Ge+ 8+

: (26)

whereG, (Gg¢) is the uniaxial shear energy per unit volume for a unit aggpBhear strain
(stress). The second equality follows directly from thedwet formula (25). Parametets
are defined by

(27)

Gy <9K:|:+8G:|:>
+t=— =)

6 \ Ki+2G.

In (27), values oG (shear moduli of isotropic comparison materials) are givgimequali-
ties

0 < G_ < min(Cas, Gy, Cos), (28)
and

max(Caa, Ggg, Ces) < G4 < 00. (29)
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The values oK (bulk moduli of isotropic comparison materials) are thevegiby algorith-
mic equalities

_ Kv(Ggr—Gy)

=Gy -en (30)

derived by Peselnick and Meister (1965) and Watt and Pese(fD80). Also see Berryman

(2004a). BoundsGﬁeX (+ is upper bound- is the lower bound) on the shear moduli for

random polycrystals of hexagonal crystals are then given by

1 1 1+ y+(Ky —Kyg) 2 2
=% + ] (31)
Ghext¢x 5SLGgg+ e +6:(Kv —Ky)  Caatis  Costix
wherey, ands.. are given by
1 5G./2
=——— and ft=—""—. 32
T KL +4G./3 T KL 126, (32)

Ky is the Voigt average of the bulk modulus as defined previously

TABLE 1. Input Parameters for Weber Sandstone Model of DoubledigrSystem.
Ks Kél) K((jl) G((jl) ¢(1) Kéz) Kéz) GEIZ) (b(Z)
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

279 280 193 20.2 0.095 270 0.24 0.60 0.095
Note: Porosityp is dimensionless.

EXAMPLE: WEBER SANDSTONE
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Figure 3: Bulk modulus bounds and
self-consistent estimates for the ran-
dom polycrystal of porous laminates
model of a Weber sandstone reser- 10

R
5:4,>»7*/"'//

C()).75 0.80 0.85 0.90 0.95 1
Volume Fraction of the Storage Phase

Bulk Modulus (GPa)
=
al

Weber sandstone is one possible host rock for which the redje@ilastic constants have
been measured by Coyner (1984ABLE 1 displays the values needed in the double-porosity
theory presented here. These values follow from an anably<i®yner’s data if | assume the
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Figure 4: Shear modulus bounds and 516’
self-consistent estimates for the ran- 214/
dom polycrystal of porous laminates ;flz—
model of a Weber sandstone reser- glo—
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. . Double-Porosity Coefficients for Weber Sandstone
Figure 5: Values of double-porosity 0.25 ‘ ‘ ‘ ‘
coefficientsy; for a system similar to L S
Weber sandstone. Values used for the R e
input parameters are listed imBLE 0.10f ‘a
1. For each coefficient, three curves 7§ oos- % EERRRRREEE— N
are shown, depending on which esti- < o i
mate of the overall bulk modulus is 05l %
used: lower bound (dot-dash line), —010F
self-consistent (solid line), or upper orsl g
bound (dashed line)jim1-weberai] o0l ‘ ‘ ‘ ‘
0.75 0.80 0.85 0.90 0.95

[NR]

Volume Fraction of the Storage Phase
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stiffer phase occupies about 92% of the volume and the mampltant phase the remaining
8% of total volume. The drained bulk moduli of the storage &madture phases are used
in the effective medium theory of the previous section teedatne the overall drained and
undrained bulk moduli of the random polycrystal of lamirgsasgstem. Results for the self-
consistent estimates (Berryman, 2004b), and the upperoavet bounds for the bulk moduli
are all displayed in Figure 3. | see the undrained moduli @arlg indistinguishable, but
the drained constants show some dispersion. SimilarlyoWsbounds and self-consistent
estimates for the overall shear modulus of this model resenv Figure 4. Both undrained
and drained shear moduli show some dispersion. Note thatraction must be applied to
(31) before computing the self-consistent effective camist The self-consistent estimates
for bulk modulus are found correctly from the bounds (26) dking K. — K*, GL — G*,
and therefore, — ¢*. The resulting formula is

(Gl

K* =Ky .
(G +¢7)

(33)

The self-consistent formula for shear modulus requiresenadiort. The difficulty is that the
formula given in (31) has already made use of a constraintishanly true along the bound-
ing curves defining the upper and lower bounds on shear meddince the self-consistent
estimate always falls at points away from this curve, a mergegal result must be employed.
When the inappropriate constraint is replaced by the géfearaula and then (33) is substi-
tuted, | find instead that the self-consistent formula faatmodulus is given by

G*+¢* 5

1 1(1+y*(KV—K*) 2 2 ) (34)

_ +
Geg +¢* Cas+¢*  Cept+ L™

wherey* = 1/(K* +4G*/3). The main difference is that the denominator of the finghten
the right hand side is simpler than it is in the formulas f@ shear modulus bounds. Observed
dispersion is small over the range of volume fractions aereid. Then these drained values
K, K are used in the formulas of the second section to determithegistimates and bounds
on the double-porosity coefficients. These results aredisatayed in Figure 5, which is also
the main result of this paper. Note that the curvesatgressentially repeat results shown in
Figure 3, but for the compliance/ K, instead of the stiffnesk j. The coefficientsy,, apo,
and ap3 show little dispersion. This is natural fek, andap, because the storage material
contains no fractures, and therefore is not sensitive tctdra compliance, whereas those
mechanical effects on the overall reservoir response caretyelarge. The behavior Gl
also shows little dispersion as this value is always vergelm zero (Berryman and Wang,
1995; Berryman and Pride, 2002). The two remaining coefitsishow a significant level of
dispersion are;3 andags, where the third stress is the pore presspl?é of the fracture or
joint phase. | generally expect that the joint phase is mghtly coupled to, and therefore
most sensitive to, the fluctuations in overall drained butidoiusK §. So all these results are
qualitatively consistent with our intuition. Since | haveadytical formulas for all they; s, it

is straightforward to check that the observed dispersia randags is directly proportional

to the dispersion in AK § (or, equivalentlya; ).
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CONCLUSIONS

The methods presented have been successfully appliedeordeé geomechanical parame-
ters for one reservoir model assuming Weber sandstone io#teock. Although the details
differ, the general ideas used above for elastic and pasteleonstants can also be used to
obtain bounds and estimates of electrical formation faatat fluid permeability for the same
random polycrystal of porous laminates model. Analysis erinpeability and fluid flow for
this model (and especially memory effects) requires sonm@a eare, and so | defer this part
of the work to another contribution. The present work hasceatrated on an examination of
the very low frequency (quasi-static, drained behaviod aery high frequency (undrained
behavior) results for the double-porosity model using cosites theory as the main analysis
tool. This approach is justified in part because it is welinkn (using one pertinent exam-
ple) in the analysis of viscoelastic media (Hashin, 196@31¥inogradov and Milton, 2005)
that the low and high frequency viscoelastic limits can Ho¢htreated using the methods of
guasi-static composites analysis, since the complex mbdabme real in these limits. The
corresponding result is certainly pertinent for the fulubdte-porosity reservoir analysis as
well. Further work is needed of course to determine the behder all the intermediate
frequencies, but this harder part of the work will nece$gdne both partly analytical [for
example: Prideet al. (2004)] and partly computational [for example: LewallerdaNang
(21998)] in nature, and will therefore be presented in fufuublications.
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