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Iterative linearized migration and inversion

Huazhong Wanly

ABSTRACT

The objective of seismic imaging is to obtain an image of titessrface reflectors, whicl
is very important for estimating whether a reservoir is liered for oil/gas exploration or
not. It can also provide the relative changes or absoluteegabf three elastic parameter
compressional wave velocity,, shear wave velocitys, and densityo. Two ways can

achieve the objectives. In approach I, the angle reflegtisigiven by prestack depth/time
migration or linearized inversion, and the relative changkthe three elastic parameters
are estimated from the angle reflectivity by AVO/AVA invarsi In, approach I, the rel-
ative changes (by linearized inversion) or absolute vajbgsonlinear waveform inver-
sion) are obtained directly. | compare non-iterative Inme=d migration/inversion imag-
ing, iterative linearized migration/inversion imaginganon-linear waveform inversion
All of these imaging methods can be considered as backgirofeand back-scattering
imaging. From backscattering imaging, we know that seismaee illumination has a key,
influence on so-called true-amplitude imaging, and | givaralysis for the possibility of
relative true-amplitude imaging. | also analyze the faxtbat affect the imaging quality
Finally, | point out that the Born approximation is not a g@gproximation for linearized
migration/inversion imaging, and that the De Wolf approatian is a better choice.
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INTRODUCTION

The main objective of migration imaging is to generate angenaf the reflectors, that is, to
position reflection points and scattering points at theie subsurface locations. The method-
ology is to downward continuate the observed wavefield taéflection points or scattering
points using a known macro-velocity model with appropriptepagators, and to pick out
the focused wavefield with an imaging condition. The focuseadefield displays the im-
age of reflectors or scatterers. Therefore, | give the definfor migration imaging:Based
on some assumptions about the geological medium and with theelp of mathematical
models, the observed seismic wavefield is extrapolated todlsubsurface reflectors using

a macro-velocity model with a propagator, and the imaging amplitudes are extracted
with an imaging condition. Generally, the geological medium is assumed to be an acoust
medium, and the mathematical model is either the one-wae\eguation or the Kirchhoff
integral operator. However, migration imaging has not cletgy satisfied the needs of oll
and gas exploration, since many reservoirs found recemdlycantrolled not only by their
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geological structures but also by their lithology. Therefahe lithological parameters are
increasingly important to oil and gas exploration. Lithgittal parameter estimation is typi-
cally an inverse problem. In essence, migration imagingnigeerse problem, and it is also
ill-posed. However, migration imaging is changed into apapntly well-posed problem by
splitting it into two processes: wavefield extrapolation amacro-velocity analysis. The main
objective of inversion imaging is to estimate lithologigalrameters or their disturbances, in-
cluding reflectivity, P-wave velocity, S-wave velocity,dathe density. There are linearized
and non-linear inversions. The basis of linearized ineerss to linearize the formula char-
acterizing the scattering wavefield with the Born approxiora The Born approximation is
a "physical" approximation, with which only the primarie® anodeled. The analytical (for
constant background) or formal (for variable backgroumggision formulas can be derived
from the linearized forward-modeling formulas. This is axsterative linearized inversion.
Based on least-squares theory, an iterative linearizeztsion approach can be derived from
linearized forward modeling. For the non-linear wavefonweirsion, only the wave propaga-
tor is linearized at a point in the model space. With the pgaper, all of the wave phenomena
are characterized. We call this linearization as a "mathieala approximation, with which
both primaries and multiples are simulated. This is the nd#ffierence between the two in-
version approaches. Theoretically, the non-linear inearéTarantola, 1984; Mora, 1987) is
superior to the linearized inversion (Bleistein et al., 19Bleistein, 1987). In practice, it is
very difficult to recover all wavenumber components of thiediogical parameters, since the
seismic data is frequency-band-limited and aperturetdichand polluted with non-Gaussian
noise. Therefore, the linearized migration/inversionesdiming more and more important,
especially the iterative linearized migration/inversapproach. Stolt and Weglein (1985) dis-
cussed the relation between the migration and the linehiizeersion. Gray (1997) gave a
comparison of three different examples of true-amplitudading. So-called true-amplitude
imaging tries to recover the reflectivity of the reflectors.

In this paper, | compare non-iterative linearized mignafilmversion imaging, iterative lin-
earized migration/inversion imaging, and nonlinear wauafinversion. All of these imaging
methods can be considered as back-projection and backsegtimaging. From backscat-
tering imaging, we know that seismic wave illumination hakeg influence on so-called
true-amplitude imaging, and | give an analysis for the goksi of relative true-amplitude
imaging. | also analyze the factors which affect the imagaitu Finally, | point out that the
Born approximation is not a good approximation for lineadznigration/inversion imaging,
and that the De Wolf approximation is a better choice.

WAVE PROPAGATOR AND ITS LINEARIZATION

[1] Acoustic wave equation

Based on inverse theory, the characterization of seismiewaopagation is important for
parameter estimation. Here | use the acoustic wave equattbriwo elastic parameters —
bulk modulus and density — to model seismic wave propagatica geological medium,
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though we know that this is a simplification.

1 v w?
p(X)  k(X)
wherex is the bulk modulus angd is the density. Both parameters vary horizontally as well
as vertically. P (X, Xs, ) is the acoustic pressure wave field, &¥@) is the monochromatic
source function. We can carry out the full waveform invemswith equation (1). Taran-
tola (1984) gave a detailed theoretical framework. Prattlditks (1998) discussed in detail
how to implement seismic waveform inversion in the freqyedoemain. Now | introduce a
background model which is so close to the true model that weneglect the second and
higher-order reflection and transmission effects causabdinteraction between the incident
wave and the scattering potential. The background wavediegdgs the following equation:

LP = (v- ) P (%, %sw) = 8 (X — %s) S(w), 1)

1 w? . - o
LoP = <V-—V+—)P(x,xs,w):s(x—xS)S(w). 2
po Ko

With the definitionV = L — Lo, the identityA= B+ B (B~*— A~!) Abecomes
G =Gp+GoVG, (3)
if we associaté&s with A andGgp with B. And equation (3) is further rearranged to
G=( —GoV) G (4)

Performing a Taylor expansion on the right term of equat®ryields

G= |:Z(GOV)‘} Go. (5)

j=0

Equation (3) is called the Lippmann-Schwinger equatioay@n and Stolt, 1981). Clearly,
if j > 2, equation (5) depicts second and higher-order scattésings of wave propagation,
which are neglected. The linearized propagator charaetennly the first scattering of wave
propagation. That is,

G = Go+ GV Go. (6)
This is the Born approximation, the physical meaning of whi clearly demonstrated by
equations (5) and (6). Froln= — (V . %V + ‘”72) andLo=— (V . p—lov + ‘;’—j) the scattering
potentialV is defined as follows:

1 w? 1 w?
V = (V. 2v+— |- (V-Zv+—
P K po Ko

()7 (3)
= V- |(Z—=|V4+e?[Z-=
P PO kKo

1 1
- v.—(@—1>v+w2—(@—1)
Lo \ P Ko \ K

a: a
= V. 2v 22
0 Ko

(7)
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wherea; = 2 —1 =22 andAp = po— p; @ = 2 — 1 = 20 and Ak = ko —«. Therefore
the linearized synthetic wave field is composed of two pant: is the background wave field
described by the background Green’s function; the othdrastattering wavefield caused by
the scattering potentidl. According to equation (3), the total wave field is written as

P (%, Xs, @) = Go(f(r,is,w)+w2/d3xGo(>?r,>?,w)V(>?)P(i,is,w), (8)
and the scattering wavefield after the Born approximatiomfequation (6) is

Ps (X, Xs, @) :wzfd3xGo(ir,i,w)V(X)Go(i,is,w). (9)

[2] Scalar wave equation

In seismic wave imaging, the scalar wave equation is muctercommonly used. Given the
Fourier transform of the scalar wave equation for a pointcau

2

W
v?(X)

LP (X, %s,w) = (v2+ )P(?(,)?s,w) = —8(X—%s) S(w). (10)
Equation (10) is a Helmholtz equation. HeP€X, Xs, w) is a total pressure field,(X) is the
variable acoustic velocity, the density is assumed to beteom, and5(w) is a source function.
Taking an initial estimation of the medium velocity(X), as the background velociiy (X),
v (X) can be split into the known and unknown parts by the follayin

o
v3(X)  v3(%)

where the background velocity (X) need not be constant. The variabl§) is the unknown
velocity perturbation to be determined from the data, wisdalled the scattering potential of
the medium, since it is a measure of the scattering strengtbiats where the actual medium
differs from the background medium. Substituting equafil) into equation (10) yields

(1+a(x), (11)

6()2

v3(X)

LP (X,Xs, @) = <v2+ ) P (X,%s,w) = —8 (X — Xs) S(w) — w?a(X) P (X, %Xs, ). (12)

For the background medium, the background Green’s funsagisfies the following equation:

A

v§(X)

LoGo (X, Xs, ) = <v2+ ) Go (X, Xs,w) = —8 (X — Xs). (13)

Therefore, with the help of the Lippman-Schwinger equatibequation (3), the total pressure
wave is

P (X, Xs,w) = Go(f(r,f(s,w)—i-wzfd3xGo(>?r,>?,w)a(>?) P (X,%s, ), (14)
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and the scattering wave field caused by the scattering faterk) is
Ps (X, Xs, 0) = w? f d*xGo (%, X, w)a(X) Go (X, Xs, »). (15)
Equations (9) and (15) create a link between the scatteredfigdd and the scattering poten-

tials. They are Fredholm integral equations of the first kand are the bases of the linearized
inversion. Given the observed scattered wavefield, théesoay potentials can be solved.

[3] The scattering potential and the reflectivity

Pavy =P vy

R=—— ——
Pavo+ Py

2P, v,

Povy+ Pyvy

Figure 1: The acoustic wave reflectivity and the transmissioa planar reflector in the case
of zero incident anglghuazhong1-reflectivity[CR]

From Fig.1, and assuming that the density is constant, thealaeflectivity is defined as

Rlg—o0 = , (16)

and the transmission coefficient is
2vo

Tlo—0 = (17)

va+ur

whered is the incident angle. Therefore, defining the scatteringgm@al as 4 a(X) =
S\ 2

(“O(X)) , equation (16) and (17) can be rewritten as

v(X)
1-J1+a
Rlg=0 = ———, (18)
1+J1+a
and
2
Tlo=o= (19)

1+J/1+a



106 Wang SEP-123

respectively. If waves meet a reflector with a non-zero iectdangle, the reflectivity and
transmission coefficient are

v2C09¥1 — v1CO0F)

R(61) = , 20
(1) v2C0Y; + v1C0F> (20)
and
2v2C091
T(01) = . 21
( 1) v2C0Y1 + v1COF» ( )
Similarly, they can be expressed with the scattering pateas
CoY1 —+/1+acoy
R(6y) = o=V 2 18C0%2 (22)
coY; ++/1+acod,
and
2c09;
T(01) = , 23
(©2) co¥1++/1+acos, (23)

respectively. The angle reflectivity has a close relatiothéoscattering potentials. Generally,
the angle reflectivity is estimated by amplitude-presemeahing, and lithological parameter
disturbances are evaluated from them by AVO/AVA inversion.

ITERATIVE INVERSION IMAGING ALGORITHMS

[1] Operator linearizeation in non-linear inversion

A linear operatolL depicts a physics process. It can be written as
Lm=d, (24)

whered is the synthetic wavefield and is a medium model. The linear operatorcan be
seen as a function, which can be expanded into a Taylor seei@sa known modahg as
follows:

2L AL

Lm=Lm +8LAm+ (Am)2+-- -+
~ 0 9m am2 amn

Omitting all the terms that are higher than second-ordddgyia linearized equation:

(am)"+-... (25)

oL

—Am=~Lm-—Lmg. 26

o 0 (26)
If Lm stands for the observed data, and.ihy synthesizes a wavefield with a known back-
ground model and a given operator, equation (26) can bettewas

oL
S sm A doPe— deel 27)
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Equation (27) can be regarded as a matrix equation, whichoaal-conditioned. The model
disturbance can be solved by many linear algebraic algosthf the background modelg is
very close to the true model, the true model can be approdmhedme iterative algorithms.
This idea is meaningful, but impractical. In fact, equat{@i) can be simplified to

ASm = &d, (28)

where A = 9L /dm andsd = d°PS— d°@ . |east-squares methods are then used to solve the
inverse problem. Equations (9) and (15) can also be expiesgbe form of equation (28).
Comparing equation (28) with equations (9) and (15), itéadly seen that the main difference
between linearized inversion and non-linear waveformnsie& consists in the forward mod-
eling operator. The operator after Born approximation nedely the primaries; however,
the Frechet derivativé\ = 9L /om models all the wave phenomena. The Born approxima-
tion should be replaced by the De Wolf approximation. The-lva@ar inversion incurs much
higher calculation costs.

[2] L2 norm or cost function definition

Based on least-squares theory, a minimizing problem carefieed!, which aims to findm*
in order to minimize the cost function. The norm or cost function definition is given by

f (5m) = | ASm — &d 2. (29)

In order to constrain the inverse problem, or to use some priormation to bound the solu-
tion of the inverse problem, regularization is commonlydisk this case, the cost function
needs to be modified.

[3] Iterative algorithms

Many algorithms can be chosen to solve the minimizing probhehich is determined by the
property of matrixA. The matrix A is hoped to be positive definite. Here only Newton’s
iterative algorithms are listedA] Initial Newton’s approach Performing a Taylor expansion
of f (§m) near the poinm® yields
f(ém) =~ ¢(m)
f (6m®)+ v f (5m®) (sm —sm®)

+ :—2L(8m—8m(k))T V2 (sm®) (sm—sm®). (30)

Letting 3¢ (m) /3sm = 0 yieldsV f (sm®) + v2f (sm®) (sm —sm®) = 0. If the Hessian
v2f (sm®) is invertible, the Newton iterative algorithm is

sm+D) = sm® _[v2£ (smM)] v f (sm®) (31)
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Clearly, the simple Newton iterative algorithm lacks 1Drséang. The Newton iterative al-
gorithm with 1D searching is called the damping Newton &atar. Algorithm procedure:

(a) Assign the initial modesm® and the acceptable errer< 0 and set the iterative
numberk = 1.

(b) CalculateV f (sm®) and[V?2f (8m(k))]_l.
() If [V f (8m®) || < e, then stop iteration; otherwise® = — V2 f (8m(k))]_1Vf (sm®).

(d) Starting fromsm®, carry out 1D searching along the searching directi¢hfor A&
satisfying f [(sm®) + A, d®] = min{ f [(sm®) +1d®@]} _,.

(e) Lettinggm® 1) = sm® + 1, d® andk := k+1, go to step (b). Ifthe Hessiar? f (sm®)
is not positive definite, the Newton algorithm should be rfiedifurther. That mearfg? f (sm®)
is replaced wittv2 f (sm®) + &1 . If the ey is chosen suitably, the matrix? f (sm®) + gy |
will be positive definite.[B] Quasi-Newton algorithm: The main feature of this algorithm
is that the inverse of the Hessian matrix is not expliciticatated. Further implementing the
differential operation on both sides of equation (30) yseld

v (m®) ~ v f (sm* D) + v2 £ (smEtD) (smk — smtD), (32)

and definingp® = smk —sm&+D) andq® = v f (sm&+D) — v f (sm®) yields the Quasi-
Newton condition,

p® = Hi1q®, (33)

where Hi1 = [V2f (8m(k+1))]_1. A series of formulas for calculatinglk,1 is listed be-
(P —Hig®) (p¥—Hig™®) " .y DFP _ p¥(pX)"
(q(k))T(p(k)—Hkq(k)) . FOI’mU|a 2'Hk+1 = Hk+ (p(k))Tq(k)

M) (Heq®)T
%, which is the DFP (Davidon-Fletcher-Powell) algorithmrifala 3: HE2F, ¢ 5=

(a%) " Hig® \ p®(p®)"  p®(g®) T Hyt Hig® (p®) " . i s
Hk+(1+ (P @ ) (50)Tq® ) a® , Which is the BFGS (Broyden-Fletcher
Goldfarb-Shanno) algorithm. Formula #?,; = (1—¢) H25P + ¢HZBLCS whereg is an
parameter. The algorithm procedure is as follows:

low: Formula 1:Hy,1 = Hx+

(a) Assign the initial modeim® and the acceptable error< 0.

(b) SettingH; = I,, and the iterative numbér= 1, calculatey; = V f (sm().

(c) Letd® = —Hygk.

(d) Starting fromsm®), carry out 1D searching along the searching directi$hfor A®
satisfying f [(sm®) + 1, d®] = min{ f [(sm®) +kd(k)]}kzo.
() If |V f (5 m) || <, then stop iteration; otherwise, go to Step (f).

() If k=n, then let|sm® = sm&+1)}||, go to Step(b); Otherwise, go to Step (g).

(9) Lettinggks1 =V f (m*HD), p® =sm® —sm&+D andq® = v f (smE&+D) —v f (5m®),
calculateHy1 with any of Formula 1-4. Setting:= k+ 1, go to Step (c).
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COMPARISON AMONG MIGRATION/INVERSION METHODS

(A) Non-iterative linearized migration/inversion
(1) Wave equation prestack migration/inversion

Near the scattering poiit, we can define an error function or a norm as

E(R(X) = ) (Us(%,0) - Ui (X,0) R(X))*do, (34)

®min

where R(X) is the reflectivity,Us(X, ) is the upcoming wavefield, which is downward ex-
trapolated to a reflector, and} (X, ) is the incident wavefield propagated to the reflector. At
the scattering poink , the scattering wavefields(X,») should be equal or close to the con-
volution between the incident wavefielt (X, ) and the reflectivity function. From equation
(34), the imaging condition of the migration/inversion ssfallows:

T Us (R, 0) UF (%,0)
R(X) = — . (35)
> (Ul Xo)Uf (X, 0)+¢)

@min

The term in the numerator is a correlation imaging for prdstaigration. The term in the
denominator expresses the illumination of the scatteroigtp. Fig.2 geometrically explains
the imaging condition, which says that the imaging occuithatarrival time of the incident
wave which equals the take-off time of the upcoming wave. him frequency domain, the

Figure 2: The geometry explication
of the cross-correlation imaging con-
dition. S* is a virtual source of th
real sourceS. The propagatot* is
the conjugate of the downward prop-
agatorL. Therefore, both the prop-

agatorL " andL* collapse the wave-

fronts into a point—the imaging point
P. |huazhong1-Imaging_fidCR]

Focusing Point
or Imaging Point

Reflector

extrapolated upcoming wavefield at the scattering point is

Us(X,0) = G (%, X, 0) d®S (X, Xs, @) , (36)
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and the incident wavefield at the same point is
U (X,0) = G (X, Xs, ). (37)

Substituting equations (36) and (37) into equation (35)applying the WKBJ approximation
to the Green’s functions, we can rewrite equation (35) devid:

3° G (X, %, @) GH (%, %, ) dOPS (%, %s, )
R()_{) — ®Wmin

> [6(X, %) (G (%, %s,0))" +¢]

Z A()—(” s, w) gl 0T(X.Xs,0) A()—(’r X, w) got(X ,i,a))dObS()‘('r X, w)

®min

Wmax N
Z |A(X!X37w)|2
®min

@Wmax

3 AR, %, K, 0) @@THXX0)dObS(F R )
— Zmin : (38)

Z |A()_('1)_(>S!w) |2

®min

Where A()_(r f )_(, )_(>5,C()) = A()_{, )_(5, Ct)) A()_(} f )_(>, Ct)) and T ()_(} f )_(>, )_(>5, Ct)) =T ()_{, )_(>5, Ct)) +7 ()_(} f )_(>, Ct))
From equation (38), itis clear that the seismic illuminafays a key role in migration/inversion
imaging. The possibility of relative true-amplitude imagiwill be discussed later.

(2) Wave theory tomography

(a) Fourier Diffraction Tomography for constant backgroung Wu and Toksoz (1987) gave
the plane-wave response in the directidinom an incident wave:

Py (T, r) — k26 [k (F —T)} (39)

where O |k F—T) is the 3D Fourier transform of the object functi@n(r). PS'OI (T, F) is
some kind of projection. Comparing this to linear Radon ¢gfarm, we know that the ob-
ject function can be accurately restored if the angles optaee waves continuously change
around the object. Fig.3 shows the projection from the ré&smig@wave source and from the
virtual plane wave source.

(b) Inverse Generalized Radon Transformfor variable background The scattered wave-
field after Bron and WKBJ approximation is of the followinge:
82
Ps(F.&1) = __/ AF.%,9)5[t—7 (F.%.9] f (%)%
0t2 Jq

_ f AG.%,98 [t—1 (F.5.9] f ()%, (40)
Q
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sP! \/ RP!

The Object (or sacttering body)

* Virtual Plane Wave Source

Figure  3: The  geometry
of plane wave propagation.
|huazhong1-planewave_tomography
[CR]

where A(F,X,8) = A(r,X) A(X,8) and  (F,X,8) = T (§,X) + T (r,X). It is known that the
diffraction-time surfaceRs = {d:t = T (5,X) + T (F',X)} in the data space is a counterpart of
the isochron surfacky = {x:t = T (5,X) + T (r,X)} in the model space. These dual geometric
associations naturally give rise to a corresponding paarojfection operators. Equation (40)
can be written as

82

Ps(d)= -2

f AF.5.3) T (x). (a1)

The diffraction curve in the data space is a projection ofsachron in the model space. This
is a kind of Radon transform (Miller et al., 1987; Hubral et 4996). The standard Radon
transform and inverse Radon transform in three dimensiongigen by

>(E.p) = [5(p-E-%) f RO (@2

and

B, 1 % A (2
(60 = g3 [ |52t (E10) lpes, | % (@3)

respectively, wher@ is the distance from the origin to a plane which cuts throunghabject
body,é is the unity direction vector which is normal to the planeg &ns a point on the plane.
Comparing this with the classical Radon transform and werige, the final 3D inversion
formula can be given as

. 1 L. . |coSa (T, %0,3)| - . .
f (o) =— f d?& (7', %o,3) 3(XO)L(F )ﬁ(o’)q) Ps(,5,t = 10). (44)
In equation (44), the angle varialfi€r, Xo, S) near the imaging poir¥y is used, rather than the
measurement configuration at the surface. Fig.4 illugtrhie. The angle variable is related to
the measurement configuration and reflects the seismic \Warenation aperture. Only if the
aperture is large can a high resolution image be obtaineel rdlative true-amplitude imaging
is severely affected by the angle variable. Bleistein andi&tell (2001); Zhang (2004) gave
some similar true-amplitude migration/inversion fornaula
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Figure 4. The geometry between the
incident and scattering rays near the
scattering point, or imaging poinb.
huazhong1-GRT_fifCR]

Tangant plane of the isochron surfac

(3) Least-squares migration/inversion

The conventional prestack migration can be characteriged a
SMmig = A™5d, (45)

where A" is a conjugate transpose matrix, which is a back-propagjtire wavefield. The
least-squares prestack migration/inversion imaging @oaoried out by the following equa-
tion:

5, = (A" A) ™ (AM5dl) = H- (A"50) = Hormm ()

whereH = A" Ais a Hessian matrix. The meaning of the Hessian will be dsediin detail.
Equation (46) says that the deconvolution of the conveatiprestack migration by the inverse
of the Hessian produces the migration/inversion results.

(B) Iterative linearized migration/inversion
We can define a minimizing problem that aims at findémg* by minimizing the following
cost function:

f (5m) = || ASm —5d|12. (47)

The Newton iterative algorithms can be used for solving th&mizing problem. The stan-
dard Newton iterative algorithm is

smktD) = sm® _[v2 (5m(k))]_1Vf (sm®). (48)

However, the inverse of the Hessian is difficult to calculdtee Quasi-Newton algorithms are
used commonly. The inverse of the Hessian matrix can be ledéclwith the DFP formula:

T T
HEEP _ 1 p® (%) (Hka®) (Ha®)
i (p®) " q® (g%) " Heg®

(49)
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wherep® = smk —sm**1) andgq® = v f (sm*+D)) — v f (sm®).
The Quasi-Newton iterative algorithm is

smEHD — 5m® _ H, 1V f (5m®). (50)

(C) Non-linear waveform inversion

The basic procedure for non-linear waveform inversion msilgir to the linearized iterative
migration/inversion. It is worth mentioning again that theechét derivative in the non-linear
waveform inversion is quite different from the propagatiesthe Born approximation in the
linearized migration/inversion.

ASPECTS OF LINEARIZED MIGRATION/INVERSION

[1] Numerical calculation of Green'’s function

The forward and backward propagations of the wavefield playaole in the migration/inversion
imaging. The Helmholtz equation is commonly used for depicivave propagation in acous-
tic media. Based on it, | derive the formulas for traveltinmel @mplitude calculation corre-
sponding to the main seismic wave energy. In spherical ¢oatet, the Helmholtz equation

is of the following form:

~ 19 9 19 9 1 92
veU 0,0,r; = | =—(r’— )+ =—(sino— U@,o,r:
6.¢.r50) {r28r< 8r)+r ( >+r 25irP 0 9¢? } 6.¢.r50)

_ —Cs—jﬂ(@,w,r;w). (51)

Equation (51) can be rewritten as
<a+1)20+[ ! sm@a(sinea)Jr ! 82]0—
ar - r r2sirfé a0 30 )  r2sirfg dp2|

The outward one-way wave equation can be derived from equéii?) as follows:

ad ad . 0 1 02
(8r >U(9 ¢,r,w)_|f\/1+ s?s [sm@ <sm9£)+r 2920 997 ]U(G @1 ),
(53)

2
(—%ﬂ%)ﬂ 6,9,r;),
(52)

whereqx is defined asc = —‘;’—22 + rlz Equation (53) can be expanded as

. P . ) 32
fr R [smew (sino-2) +ﬁ]

. . 2
14— [sm@% (sind L) + 33—(/,2}

(aar l)U(G o.r;0)=ivaU6,0,r;0)+ U (6,¢,r;0),

(54)
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wherea andb are the optimal coefficients. Then, equation (54) is spld two equations:

8%0(9,<p,r;w)=(—%+iﬁ>0(9,¢,r;w), (55)

b 9 9 92 9 ~
1+—|sind— | sind— — |+ —=U6,0,r;
{ +oer2$in29[ ae( ae>+a¢2]}ar ©.0.10)
ia 3 3 32 7~
=—————|sing— ( singd— — (U @,0,r;w). 56
ﬁrzsinze[ 80( 80)+8¢2} .p.150) (56)

Obviously, equation (55) can be solved analytically, angb¢ign (56) can be solved by finite-
differences. The finite-difference scheme can be writtehefollowing form:

[1— (g —iBo) Tol [ —(%—iﬂw)Te]Uirh =[1 — (a9 +1B0) Tol [ _(05<p+i,8(p)T9]Oir“jy

(57)
qn i i b b anr aAr
whereU; =U (1A0, jAp,NAT), a9 = =5, dtp = 2ang?’ Po = 2Jar2n02 andg, = NI

The one-way wave extrapolation in the spherical coordisgtem can be implemented by
solving equation (55) and (57) in the frequency-space domHie traveltime and amplitude
corresponding to the maximum energy can be picked out inréggieéncy domain or time do-

main. With the picked traveltime and amplitude, we carriatl@3D integral prestack depth
migration which gave a high-quality imaging result (Huaz$p2003). This demonstrates
that the method can be used for constructing the Green'siunscin the migration/inversion

imaging.

[2] The matrix expression of linearized migration/inversion

The linearized migration/inversion can be formulated fribva integral expressed in equation
(15). It can be regarded as an inverse generalized Radosfdren Equation (15) can be

expressed as a matrix equation. The process for solvingghatien set is just the migra-

tion/inversion imaging. Following Berkhout (1997), we figive a matrix expression of wave
propagation from a source to a scatterer and then to a receive

g1 O - G |[ru o2 v orio [ 9n 9 9y

y U y r r e r D b ... D

WY R(O)WP = %1 %2 %p 21 f22 2Q %1 92 BN
Owi 9wz - 9w rer Tp2 -+ TPQ 981 982 98N

(58)

whereWV is a discretized Green’s function for upward wave propagat® is a discretized
Green'’s function for downward wave propagation, &) is a reflectivity matrix, which
is related to the incident angle. If the variation of refleityi with angle is neglectedR (6)
becomes a diagonal matrix. The reflectivity in this case ssia®d to be the normal reflec-
tivity. In practice, the reflectivity of a reflector variestiithe incident angle. This is called
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an AVO/AVA phenomenon in seismology. The prestack migrdtitversion aims at estimat-
ing the angle reflectivity to evaluate lithological var@ts. On the other hand, the residual
moveout of the angle reflectivity indicates whether the maunigration/inversion velocity is
reasonable or not. The synthetic wave field can be writtenlasifs:

s o [ (Qr82) (9°r0P), - (gUra2)yy
P (% %s,0)= Y WYRE@O)WPli,= > (07r9%)5,  (87r9P), -+ (87rG7)5y
= S|
o o (0°rg®) s (@7rg®)y, -+ (87rg®)yuy iz
(59)

In equation (59), each element of the matiixs a recorded seismic trace in the time domain
and a recorded amplitude value for a shot-receiver pairarirgguency domain. Each column
is a shot gather, and each row is a common receiver gatherefbne, equation (59) can be
regarded as the matrix expression of equation (15). Theicklgprestack migration can be
formulated as the following:

Ho o oo H
[WY (20,21)]" P (%, %s,20,0) [WP (21,20)] " = R(z). (60)
The detailed matrix expression of equation (60) is
6 9 - G5 ([ PR PR - PROJ[OR B - @
92 92 - 9w Py P - PR 92 %2 - Yq2
&% & - G |L PG P - P L OB B - 6By ]
i1 riz ro
_ | fer T2z -+ T29 (61)
p1 Ip2 'rQ

whereR(z;) is the image of the first layer. In R(z1), each row is an angle gather at an imag-
ing point, and each column is a common angle gather. The plioétion of the pth row in
the matrix[WU (20, 21)] : by any column in the matri® (X;, Xs, w) corresponds to a detection

focusing of a shot gather; the multiplication of tgth column in the matri>{WD (zl,zo)]H
by any row in the matrixP (X, Xs,w) corresponds to an emission focusing. Thibie, image
of the second layercan be obtained with

[WY (20.22)]" P (%, %, 20,0) [WP (22,20)]" = R(z2). (62)
Generallythe image of thez th layer is
(WY (20,2)]" P (% %6, 20,0) [WP (2, 20)] " = R(@). (63)

Here, the matrice[s\NU]H and[WD]H are non-recursive. Otherwise, equation (62) and (63)
will be of the following forms:

[WY (21,22)]" [WV (20,20)]" P (%, %5, 20,0) [WP (21, 20)]" [WP (z2,20)]" = R(z2), (64)
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or
[w (21,22)]H P (%, %s, 21,0) [WP (22,21)]H = R(z), (65)
and
(WY @-1,2)]" - [WY (20,20)]" P (R, %6, 20,0) [WP (z1,20)] - [WP (21,2 -)]" = R(z),
(66)
or
WY @-1,2)]" P (%%, z-1,0) [WP (z,2-1)]" = R(). (67)

Defining the cost function as
E(R(®) = IW’RE)W — P (%%, ) [ (68)
yields the formula of the linearized migration/inversion:

[WY]" P (%, %s, @) [WP]"

R(0) = ) (69)
[wo]" [w][we][we]"”
The matrix expression of the migration/inversion in equaii69) is
6 % - G ([P PB - PRI B o &
92 %2 - 9we Pl P o PR 92 Y922 - Yo
gfp ggp ng/IP Pvi P2 Pyin Q:ILDN QEN QBN
[M]
a1 raz fiq
_ | Fer T2 --- T2Q (70)
e Ip2 'pqQ
where the denominator ternv] is
% e - g
[M] = 92 9 902 9 9 92
L ngN gzDN QBN pr Ggp glldp
i 9151 9132 ggp 9|121 9122 g];N
91 92 - O2p 91 %2 - OGN | (71)
L 91 92 - Oue 991 9% " 99w

From equation (61) and (70), the migration/inversion catobally implemented, because all
elements in the matriceg/V, [WU]H, WP and [WD]H relate only to a given layer. If the
matrix [WU]H is the inverse of the matriWV, it can be expressed as

(WY WY = E, (72)
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where the matriXE is an identity matrix. Similarly, if the matri{<WD]H is the inverse of the
matrix WP, we have

wP [wP]" = E. (73)
In practice,[WU]H and [WD]H are the conjugates oY and WP respectively. Therefore,
the matrix M] is a band-width-limited diagonal matrix. The velocitywstture and the acqui-

sition geometry affect the inner structure of the matrixfdet, M is a Hessian which will be
discussed in detail later.

[3] The meaning and calculation ofV f (§m) and V2 f (m)

The iterative formula of the least-squares migration/isian is:
sm* = sm® — HkH1y £ (sm®), (74)

whereH**1 is the inverse of the Hessian. The first-order derivativie(sm®) of the cost
function with respect to the medium parameters is

V f (5m) = 2A" (Asm —5d°PS). (75)
If the residual wavefield is defined as
presidual _ aAsm _ 5dobs. (76)
and equation (75) is rewritten as
V f (5m) = 2AM presidual (77)

then the first-order derivative means that the residual igldes back-propagated. Itis further
equivalent to the classical prestack migration if the pat@mdisturbancém is set to zero at
the first iteration. The residual wavefigh¥sidual helongs to the data spa@e(X;,Xs,t), and

V f (§m) pertains to the image spatéx). Calculating the first-order derivative requires one-
time modelingAsm, which can be implemented by a prestack demigration, anetioree
classical prestack migration ofa! presidual:

r ~U ~U ~U 7 residual-rs residuakrs residuakrs
91 %1 - Y9wm P Pis™ o Py
gU gu gu Pre5|dual—rs Pre5|dual—rs . Pre5|dual—rs
vV f (8m) = 2 12 22 M2 21 22 2N
~U ~U ~U residual-rs residuakrs residual-rs
L Oip 9p - Oup 1L Py Pm2 - Pun
- §D  §D AD -
9 9 981
~D ~D ~
9o 9» Y02 (78)
~D ~D ~D
L 9In Y2n don -
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In the first iterative ste@gym = 0, equation (78) is rewritten as

Vi@Em) = —2

obs-rs

obs-rs obs—rs

obs-rs obs-rs
sdyy o byrs

(Sdobs—rs

SEP-123

obs-rs
5d?

obs-rs

obs-rs

(79)

The Hessian is the second-order derivative of the cost ilumavith respect to the medium
parameters. It is of the following form:

V2 f (5m) = 2AM A,

(80)

In the least-squares migration/inversion, the Hessiandsanvolution operator. It is used
for de-blurring the image of the classical prestack migrati Physically, the Hessian is an
indicator of the illumination. The energy of the wave progtgg through a certain medium

is expressed as follows:

E (sm) = |15 = sd"sd = sm" A Asm = [WP]" [sm]H [wY]" [WV] [sm] [wWP].

(81)

For a given layer and from the modeling equation (58), equgi1) can be rewritten as

[ glgl glllzz

E@Gm) = 91 9
L 981 982

g%‘jl g%‘jz

91 92

| 91 9w

H H
i1 riz ro
o1 22 le)
p1 Ip2 'rQ
i1 riz ro
o1 22 20
1 I'p2 r'eqQ

U u u
91 9» 9p
e TR o
Ov1 Ime2 Oup
D D D
g|131 g|132 gllaN
91 9» Ion
TR o
901 Y2 don

Clearly, for a horizontal reflector with an even reflectivatyd only the zero-offset reflectivity
considered A" A determines the energy of the wave which propagates to tlee. [Eguation
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(82) can be rewritten as follows:

- H
9121 9122 glgN g%‘jl g%sz ggp
_ | 9212 92 92N 921 92 92p
B 981 982 98N Owi 9wz - Gwp
B g%tjl g:gz ... g:gp g]gl gjgz - g];N
91 9 - Op 91 92 - OGN
| 91 w2 Oup 981 982 9don
¥ ST
_ 92 9» 902 9 9 92
| Ofv o Gon J L Grp G Gmp
i 9131 9152 gip or) 9|122 IiN
91 9» 9p 91 9» Ion (83)
| 9v1 Owe gwe 1L 981 902 9oN

The row in the matrix{WU]H multiplied by the column of the matrifw" | and the row in

the matrix[WP] multiplied by the column of the matri{<WD]H are the cross-correlation
between the conjugate of the Green’s function and the Gsdanttion at different receiver
or shot positions respectively. The auto-correlation hasak value, and the cross-correlation
decreases rapidly as the distance increases between éneereand shot positions. The auto-
correlation values are on the diagonal. Therefore, theiblessa band-width-limited diagonal
matrix. Its inverse is also a kind of band-width-limited gitemal matrix. In the extreme case,
where only the elements on the diagonal of the Hessian arewéh non-diagonal set to
zero, the elements on the diagonal of the inverse of the Biessie the reciprocals of the
elements on the diagonal of the Hessian. Therefore, theseve the Hessian plays the role
of decreasing strong illumination and enhancing poor ilhation. The Hessian itself reflects
the illumination of each imaging point. The matrix expressof migration/inversion can be
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summarized as follows:
_ k+1 K
i1 riz ro i1 riz ro
fo1 22 20 | raa raz 20
| Pl I'p2 'PQ dpxo rp1 Ip2 'PQ dpyo
~U ~U ~U U U ] -1
_ 2 9> 9 Im2 91 92 9p
U U ~U U U U
p G2p up 9u1 Im2 9up PxP
r aU ~U ~U rs rs rs ~D ~D
R il | I S R 5
9> 9 Om2 P Pz PN 92 9»
~U ~U ~U rs rs rs ~D ~D
L 91p 9op Ovp Pvi Pu2 PMN Oin 2N
~D ~D ~D D D D 1
91D1 92D1 981 91D1 g:lDZ 9|13N
J| 92 92 902 91 9» 9N
AR e TR -
9N YN don 901 Ya2 don QxQ
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Substituting the residual imaging matrix into equation)(84can be rewritten as follows:

k+1 k

N riz ro g riz ro

o1 22 20 | Taa a2 20

1 Ip2 'pqQ JPXQ \_ Fp1 Ip2 §=Yo) JPXQ
~U  &U ~U U U U -1
gbl g%1 gM1 gbl gL1J2 g%JP
9 9 Iv2 91 9» Oop
~U ~U ~U U U U
9ip Y2p Oup Imv1 9wm2 Ovp PxP

rresidual rresidual rresidual

1 12 _
rre5|dua| rre5|dua| rre5|dua|
21 22 20
rresidual rresidual rresidual
L "P1 P2 PQ PxQ

~D ~D ~D D D D 1
gllal 9%1 981 g|131 g|132 ngN
92 9» Y02 91 9» N
FSEE TR e FSEREFRRRLERS o
9N 92N Ydon 901 Y2 don QxQ

(85)

With the quasi-Newton conditiop® = Hi;.1g®, andp® = smk —sm&+D i = v f (sm&+D) —

v f (sm®), the DFP algorithm for calculating the inverse of the Hessigtrix is

p® (p®
(p®)Tq®

)T

(Hka®) (Hea®)"

DFP _
Hdr =

(a)" Hiq®

(86)
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where
k k+1
i1 riz ro i1 riz -+ T0Q
p(k) _ 21 T2 -+ T2Q | Tar 22 -+ T2Q (87)
1 I'p2 §=Yo) e Ip2 §=Yo)
and
q(k) _ [ZAH Presidual]k+1 _ [ZAH Presidual]k
— rresidual rresidual rresidual ~k+1
rresidual rresidual rresidual
— 21 22 2Q
rresidual rresidual rresidual
L 'P1 P2 PQ .
- rresidual rresidual rresidual ~K
11 12 1
rresidual rresidual rresidual
_ 21 22 20 , (88)
rresidual rresidual rresidual
L 'p1 P2 PQ

wherer[*5'942lis the image with the residual wavefield.

[4] Analysis of some factors that influence imaging

Itis worthwhile to analyze the factors which affect the inmgpquality and how they do so. We
list four main factors: (1) too coarse sampling, (2) uneveamysling intervals or missing data,
(3) ilumination deficiency, (4) migration operator. Alldke factors will slow the convergence
of iterative migration/inversion algorithms. It is obv®that too coarse sampling produces
aliasing. Fig.5 demonstrates that uneven sampling inteovamissing data will cause imaging
noise. Because the reflections from the vicinity of a reffegfioint can not cancel each other,
imaging noise appears. The illumination greatly affectsithaging quality in the case of a
complex medium. From the view of the Radon transform anchitsrise, if the seismic data set
is band-width-unlimited, and the acquisition geometryaastmuously distributed around an
object body, the object can be uniquely restored with thersw of the Radon transform. This
is theoretically true. According to ray theory tomograpifiyays are missing which should
pass through the region of interest, the image of the regibablurred. In fact, this is an
amplitude distortion of the image. Therefore, the true medparameters can never be re-
covered from real seismic data. The possibility of relatruve-amplitude imaging is analyzed
later. Propagators describe wave propagation in the bagkdrmedium. Given the seis-
mic data and the background parameters, only the propagaiffect the iterative algorithms.
Propagators should characterize wave propagation asadeljuas possible. However, com-
monly used propagators are not so accurate and many waverpkan are neglected. This
can cause amplitude and phase distortion, as well as errd¢igssian calculation. Further,
these will slow down the convergence of migration/invemsio
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[5] The imaging gather of migration/inversion

Equation (84) or (85) gives the imaging matrix:

fra riz ro
21 o2 -+ T20 (89)
e ez -+ TPQ dpyq

whereP is the number of scatterers ai@lis the number of incident angles for a scatterer.
A row of the reflectivity matrix is an angle gather. Howevée angle is not evenly sampled
in a constant angle interval in complex medium. Physicallgeflection point or scatterer is
not illuminated with a constant incident angle intervaltheanatically, an angle gather evenly
sampled with a constant angle interval for the point can bilgd with Fourier transform ap-
proaches. Weglein and Stolt (1999) and Sava and Fomel (220@)an approach for creating
the angle gathers from the imaged data set. However, in aod,nare should know the dif-
ference. The uneven-incident-angle illumination will saumaging noises. And this will also
cause amplitude distortions in angle gathers. Fig.5 shbatsatreflection point or scatterer is
not illuminated with a constant incident angle interval.

Surface

v
\/

Reflector M
P

Figure 5: the illumination with the uneven incident anqIe!sazhong1-even_incident_anpIe
[CR]

[6] The resolution of migration/inversion

To understand which factors influence the resolution of tigration/inversion, we analyze
the following matrices:

(o1 e} w1 we R | [we wetHwe " wel) ™. 9o

Ideally,allthe matrice§ W] [wo 1), {[wo]" [we ), fwe]” [we]) anaf[we* wep] ™
are the identity matriXe, and at this time the imagdR[(¢)] is of the highest resolution. From
ray theory tomography, resolution is closely related tousgijon aperture. The larger the
aperture, the higher the resolution. If the matrices in &qna90) are required to be an
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identity, besides the aperture, the spatial and temponaplsag and the propagator also have
obvious effects. Theoretically, the Hessian blurs the imege of reflectivity, and the inverse

of the Hessian deblurs the blurred image. In practice, theulzion of the Hessian is affected

by many factors. As a result, the imaging quality is not inyaidistinctly.

[7] The regularization of the migration/inversion algorithms

In probability theory, the cost function is defined as (Tapném 1984)
2S(m) = (g(m) — dobs)T CBI (g(m) —dobs) + (m - mprior) CQl (m — mprior) (91)

whereCp andCy, are the covariance matrices for the data sets and modeksctegy. It is
relatively easy to analyze the role of the covariance mafx The second term of equation
(91) can be expressed in the following matrix form:

mz
Ci1 Ci2 C13 -+ CiN My
Co1 Cz2 C23 -+ OC2N
(mg my mg -~ my) ) ) . . Mz |. (92)
C C c N o
N1 CNn2 CnN3 NN My

The vectorm — myior represents a stochastic process. The covariance n@ajristands for
the linear relation of the stochastic process at two diffetienes. If the value of the covariance
is very small, the stochastic process at the two differenés changes a little. Therefore, the
uncertainty of the stochastic process is also low. Smalleshre chosen for the elements in
the matrixCy if we have enough a priori information of the model. The samtly between
two images produced by two successive iterative migratieersion steps are used to generate
the covariance matrix. The correlation coefficients of the images can be used to fill the
covariance matribCy. Of course, the reciprocal of the correlation coefficiertshe two
images can be used to fill the covariance maﬂpﬁ. The local singular values (from SVD)
of an image reflect the local continuity of an event, which barused for constraints.

[8] The convergence of the iterative migration/inversion

Again, the iterative formula for migration/inversion imag is
smktd) = sm®) _ Hk+ly ¢ (Sm(")) . (93)

The choice of background parameters and the method forrizeg the propagators de-

termine whether the cost function is (or approaches) a @iadiunction. Therefore, the

Born approximation should be replaced by De Wolf approxiamabr other more accurate
approximations. On the other hand, to produce the imageedfirst iterative step with the

so-called true-amplitude imaging approaches will acegtethe convergence of the iterative
migration/inversion.
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THE POSSIBILITY OF RELATIVE TRUE-AMPLITUDE IMAGING

Beylkin (1985) gave a formula for estimating the (locatiofsdiscontinuities of the unknown
function describing the medium, rather than for estimatimegfunction itself. The generalized
back-projection operatdR* dual to the generalized Radon transfolrs defined as

(Ru) (y) = fa U8 gty POV £)E, (94)

whereb(y,&) € C* (X x 9 X) is a weighting function which is a smooth, non-negativecfun
tion on X x 9 X. Itis defined as

h(y.§)
a(y,§)
whereh(y, &) is a Jacobian determinant,y, &) is a cut-off functionu (t,&) can be regarded

as a generalized projection, which is the observed scdtteagefield on the surface. With the
help of a Fourier integral operator (FIO), the followingrmula can be obtained:

b(y.§) =

x (¥,€), (95)

1 :
I [ e_lp‘y f A d X 96
(log )0 =gz [ e™ 1" (o (96)
wherep = kVy¢ (y,£,n), which is the direction normal to the reflector at the imagooint.

0 Xg is the limited aperture on the surface, &(y) is the corresponding limited aperture near
the imaging point. Andf * (p) is the Fourier transform of the object function. Fraimeorem

1 in Beylkin (1985), the inverse transform of the Fourier sfamm of the object function,

(Iang) (y), approximately equals the generalized back-projectefindd by equation (94).

Clearly, if the observation apertuBe(g or 2, (y) is unlimited, the discontinuities of the object
function can be accurately estimated with equation (94eusdme assumptions. That is to
say, true-amplitude imaging can be theoretically impleteeémunder some conditions. Here,
we point that the relative true-amplitude imaging can beaioled in practice even though the
observation aperture is always limited. Equation (96) eandnsidered as a summation. If the
distribution of the Fourier transform of the object function 2, (y) is even, and the range of
the distribution is the same at every imaging point (or gcaty point), the summation will be
same. Even though the summation is not the true estimatiehdaliscontinuities of the object
function, the relative relation among these discontiesitat each imaging point is correct.
This is the essence of the relative true-amplitude imagmigue-amplitude imaging. What
prevent relative true-amplitude imaging? Missing data landed aperture are the two main
factors, assuming that the the back-projection operatsuitsible. Beylkin (1985); Bleistein
and Stockwell (2001); Zhang (2004) discussed how to cocisttsuitable back-projection
operator or true-amplitude imaging operator. From the alpmmt, we can further understand
the meaning of the illumination analysis. The objective lzé illumination analysis is to
make clear how to map the observationsac)(f; to 2, (y). If, on €, (y), the distribution of
the Fourier transform of the object function is even, andrrge of the distribution is the
same at every imaging point (or scattering point), thertikgdrue-amplitude imaging can be
achieved. It is worth to point out that the distribution shiblbe symmetrical about the normal
to the reflector at the imaging point.
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Vi

Va

Figure 6: the possibility interpretation of the relativeagramplitude imaging in the case of
simple medium structur¢huazhongl-true_amplitude_and_illuminaqi{mR]

Figure 7: the possibility interpretation of the relativagramplitude imaging in the case of
complex medium structur#huazhong1-true_amplitude_and_illunﬂ(ZR]
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CONCLUSION AND DISCUSSION

Comparing non-iterative linearized migration/inversiterative linearized migration/inversion,
and nonlinear waveform inversion, linearized migratiowdrsion has been carefully reviewed.
The following statements reflect my opinions about lineadimigration/inversion.

(1) There exists a paradox: linearized migration/invaersexuires that the background ve-
locity is as close as possible to the true velocity distidmthowever the Born approximation
needs a very smooth background velocity, so that the intidawnefield only includes down-
ward propagating waves. The Born approximation is not a dimeérization method and it
should be replaced by more accurate approximations, suble &golf approximation.

(2) In essence, non-iterative linearized migration/isiam, iterative linearized migration/inversion,
and nonlinear waveform inversion, are all inverse scattgirnaging methods.

(3) Relative true-amplitude imaging is possible, the ctiadiis that the distribution of the
Fourier transform of the object function &, (y) is even, and the range of the distribution is
the same at every imaging point (or scattering point).

(4) The Hessian matrix is band-limited and its inverse is aBnd-limited, its inner struc-
ture has close relation with the complexity of the velocibhddhe acquisition geometry. It
reflects the energy illuminating imaging points.
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