next up previous print clean
Next: Numerical test examples Up: Wang and Shan: Choosing Previous: Self-adaptive Reference velocity choice

wavefield reconstruction

Gazdag and Sguazzero (1984) use the following method for merging the extrapolated wavefield. Assume that the two extrapolated wavefields with the different reference velocities vref1and vref2 are as follows:  
 \begin{displaymath}
P_{1}\left( x_{i},y_{j},z+\triangle z;\omega \right)=A_{1} e^{i\theta_{1}},\end{displaymath} (18)
 
 \begin{displaymath}
P_{2}\left( x_{i},y_{j},z+\triangle z;\omega \right)=A_{2} e^{i\theta_{2}},\end{displaymath} (19)
where A1 and A2, and $\theta_{1}$ and $\theta_{2}$ represent amplitude and phase, respectively. The merged wavefield at a spatial point is  
 \begin{displaymath}
P\left( x_{i}, y_{j}, z+ \triangle z; \omega \right)=
 Ae^{i \theta}.\end{displaymath} (20)
The amplitude and phase of the merged wavefield is cauculated with  
 \begin{displaymath}
A=\frac{
 A_{1}\left( v_{ref}^{2}-v\left( x_{i},y_{j},z+\tri...
 ...angle z\right)-v_{ref}^{1}\right) 
 }{v_{ref}^{2}-v_{ref}^{1}},\end{displaymath} (21)
and  
 \begin{displaymath}
\theta=
 \frac{
 \theta_{1}\left( v_{ref}^{2}-v\left( x_{i},...
 ...ngle z\right)-v_{ref}^{1}\right)
 }
 {v_{ref}^{2}-v_{ref}^{1}}.\end{displaymath} (22)
where $v\left( x_{i},y_{j},z+\triangle z\right)$ is the velocity at the spatial point $\left( x_{i},y_{j},z+\triangle z\right)$.

Kessinger (1992) shows that the wavefield at a spatial point can be directly replaced by the extrapolated wavefield with the reference velocity corresponding to the spatial point. The following formula is used for merging the extrapolated wavefields with SSF operator
   \begin{eqnarray}
P\left( x_{i},y_{j},z+\triangle z;\omega \right) &=&
 \delta \l...
 ...angle z}P\left( x_{i},y_{j},z+\triangle z;\omega \right)
 \right],\end{eqnarray}
(23)
where $ v_{ref}\left( x_{i},y_{j},z+\triangle z\right) $ stands for the reference velocity at a spatial point $\left( x_{i},y_{j}\right) $, vrefl is the member of the set of chosen reference velocities with the index l. The delta function $ \delta\left(\bullet \right) =1 $ if $v_{ref}\left( x_{i},y_{j},z+\triangle z\right)=v_{ref}^{l} $; otherwise, $ \delta\left(\bullet \right) =0 $. With this method, the extrapolated wavefield can be directly inserted into the relevant position without storing it. However, the amplitude and phase of the merged wavefield is not so accurate in the case of severe lateral velocity variations. We use quadratic interpolation to reconstruct the extrapolated wavefield with the following equation:

where $P^{l-1}\left( x_{i},y_{j},z+\triangle z;\omega \right)$, $P^{l}\left(x_{i},y_{j},z+\triangle z;\omega \right)$ and $P^{l+1}\left(x_{i},y_{j},z+\triangle z;\omega \right)$ are the extrapolated wavefield at point $\left( x_{i},y_{j}\right) $ with the three adjacent reference velocities vrefl-1, vrefl and vrefl+1, respectively.


next up previous print clean
Next: Numerical test examples Up: Wang and Shan: Choosing Previous: Self-adaptive Reference velocity choice
Stanford Exploration Project
5/3/2005