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Imaging steeply dipping reflectors in TI media by wavefield
extrapolation

Guojian Shan and Biondo Biondi1

ABSTRACT

We develop an anisotropic plane-wave migration method based on wavefield extrapola-
tion. In this new scheme, we decompose both source and receiver wavefields into plane
waves by delaying shots. For each plane wave, we design a tilted coordinate system
whose tilting angle depends on the propagation direction ofthe plane wave. The wave-
field extrapolation is done by an implicit isotropic operator plus an explicit anisotropic
correction operator. We apply this method on a synthetic dataset. The results show that
our scheme can accurately handle overturned waves and imagesteeply dipping reflectors
in transversely isotropic media with a vertical axis of symmetry (VTI).

INTRODUCTION

VTI media is one of the simplest and most practically important types of anisotropic media.
Steeply dipping structures, such as faults and salt flanks, are important for the interpretation of
seismic data. The waves relating to steeply dipping reflectors usually propagate in a direction
far from vertical. If we do not account for the anisotropy in the migration, steeply dipping
reflectors will be imaged with large positional errors or will vanish from the image. To image
steeply dipping reflectors in anisotropic media, we need an anisotropic wavefield-extrapolation
operator that can handle waves propagating in a direction far from the vertical direction.

Many methods have been proposed to extrapolate wavefields and image reflectors in VTI
or tilted TI media (Ristow and Ruhl, 1997; Rousseau, 1997; Ferguson and Margrave, 1998;
Uzcategui, 1995; Zhang et al., 2001a,b). Baumstein and Anderson (2003) extrapolate wave-
fields in VTI media with a reference anisotropic phase-shiftoperator plus an explicit correc-
tion filter. Shan and Biondi (2004b) extrapolate wavefields in tilted TI media with an isotropic
operator followed by an explicit anisotropic correction filter.

The waves related to steeply dipping reflectors usually propagate far from the vertical di-
rection. Kirchhoff methods can propagate these waves correctly, but they are less reliable
for imaging complex structure because of the high-frequency approximation. Reverse-time
migration (Whitmore, 1983; Baysal et al., 1983; Biondi and Shan, 2002), which is based
on the two-way wave equation, can propagate these waves accurately; however anisotropic
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reverse-time migration is still prohibitively expensive.Algorithms such as beam migration
(Brandsberg-Dahl and Etgen, 2003; Hill, 2001; Gray et al., 2002; Albertin et al., 2001) and
coordinate-transformation-based migration (Higginbotham et al., 1985; Etgen, 2002; Sava and
Fomel, 2004; Shan and Biondi, 2004a), extrapolate wavefields in a direction close to the prop-
agation direction, and can handle these waves at a wide angle.

In this paper, we apply plane-wave migration in tilted coordinates for VTI media. VTI
media in Cartesian coordinates become to tilted TI media in tilted coordinates. We extrapo-
late the wavefields with an isotropic operator followed by anexplicit anisotropic correction.
We first discuss VTI media in tilted coordinates, then reviewplane-wave migration in tilted
coordinates, and finally show the migration results for a synthetic dataset.

VTI MEDIA IN TILTED COORDINATES

A VTI medium is a medium that is transversely isotropic and has a vertical axis of symmetry.
The phase-velocityV(θ ) of P-waves in VTI media can be expressed in Thomsen notationas
follows (Tsvankin, 1996):
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whereθ is the phase angle of the propagating wave, andf = 1− (VS0/VP0)2. VP0 andVS0 are
the P- and SV-wave velocities in the vertical direction, respectively, andε andδ are anisotropy
parameters defined by Thomsen (1986):

ε =
C11−C33

2C33
,δ =

(C11+C44)2 − (C33−C44)2

2C33(C33−C44)
,

whereCi j are elastic moduli. In equation (1),V (θ ) is the P-wave phase-velocity when the sign
in front of the square root is positive, and the SV-wave phasevelocity for a negative sign.

For plane-wave propagation, the phase angleθ is related to the wavenumberskx andkz by
the following relations:
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whereω is the temporal frequency. From Cartesian coordinates to tilted coordinates, we do a
transformation as follows:

(

x′

z′

)

=

(

cosϕ sinϕ

−sinϕ cosϕ

)(

x
z

)

. (3)

whereϕ is the rotation angle.

Figure 1 illustrates this change of symmetry axis during thecoordinate transformation.
The layered structure has a symmetry axis in the vertical direction in Cartesian coordinates
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(x,z) in the left panel. When we rotate the coordinates from (x,z) to (x′,z′), the symmetry
axis in the new coordinates (x′,z′) deviates from thez′ direction.

In tilted coordinates (x′,z′), we have the following relation between wavenumberkx′,kz′

and phase angleθ ′:

sinθ ′
=

V (θ ′)kx′

ω
, cosθ ′

=
V(θ ′)kz′

ω
. (4)

The symmetry axis is not vertical in tilted coordinates, so the angle between the direction of
wave propagation and the symmetry axis is not the phase angleθ ′, but θ ′ −ϕ, whereϕ is the
tilting angle of the tilted coordinates.. Therefore, VTI media in Cartesian coordinates become
tilted TI media. The P-wave phase velocity in tilted coordinates can be expressed as
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Thus for a VTI medium in tilted coordinates we need a wave-extrapolation operator that can
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Figure 1: VTI media in tilted coordinates. Left panel is a layer structure in Cartesian coordi-
nates. Right panel is the layer structure in tilted coordinates. guojian1-vtitilt [NR]

downward extrapolate the wavefield in tilted TI media. From equations (4) and (5), we can
solvekz′ as a function ofϕ,ε,δ, andω/VP0. The wavefield can be extrapolated in two steps.
First, the wavefield is extrapolated by an isotropic operator as follows:

P̄(z+1z) = P(z)eikiso
z 1z, (6)

wherekiso
z =

√

(ω/VP0)2 − (k′
x)2 is the isotropic vertical spatial wavenumber. This isotropic

operator can be implemented by the split-step method (Stoffa et al., 1990), the general screen
propagator (Huang and Wu, 1996), or Fourier finite difference (FFD) (Ristow and Ruhl, 1994).
Next, the wavefield is corrected by an explicit correction operator. This correction operator
is designed in the Fourier domain, and is implemented in the space domain. The correction
operator in the Fourier domain is a phase-shift operator:

P(z+1z) = P̄(z+1z)ei (k′
z−kiso

z )1z. (7)

In the space domain, this correction operator is a convolution filter. The coefficients of the
convolution filter depend onϕ,ε,δ, andω/VP0, and they can be estimated by the weighted
least-squares method (Shan and Biondi, 2004b).
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ANISOTROPIC PLANE-WAVE MIGRATION IN TILTED COORDINATES

In plane-wave migration (Rietveld, 1995; Duquet et al., 2001; Liu et al., 2002; Zhang et al.,
2003) source wavefields are decomposed into plane waves, andthe receiver wavefields are
re-arranged corresponding to their respective plane-wavesource. Shan and Biondi (2004a)
apply plane-wave migration in tilted coordinates for an isotropic medium. For each plane
wave, proper tilted coordinates are designed, whose tilting angle is selected according to the
direction in which the plane wave propagates. Source and receiver wavefields are downward
continued in these tilted coordinates. Images and dip-dependent angle-domain common-image
gathers (CIGs) are generated by cross-correlation.

Anisotropic plane-wave migration is the same as isotropic plane-wave migration, except
that an anisotropic correction operator is applied after the isotropic wavefield extrapolation
at each depth step. Since the correction operator is explicit, we build a table of convolution
coefficients before we run the wavefield extrapolation. If the medium at a point in space is
isotropic (ε = δ = 0), only the isotropic extrapolation will occur. Otherwise, the anisotropic
correction operator will be applied to the wavefield. For anisotropic correction, we search for
the filter coefficients corresponding to the tilting angleϕ, anisotropy parametersε andδ and
the value ofω/VP0 in the table and convolve the wavefield at that spatial position with these
coefficients. As in the isotropic case, images and dip-dependent angle-domain CIGs can be
created by cross-correlating the source and receiver wavefields.

NUMERICAL EXAMPLE

We test our method on a synthetic dataset and compare the results of isotropic and anisotropic
migration. Figure 2 shows the model of the synthetic data we use to test our method. Figure
2(a) is the density model, Figure 2(b) is the vertical P-wavevelocity model, and Figure 2(c) is
the map of the anisotropy parameterε. The anisotropy parameterδ is 0 for this dataset. The
salt flank is very steep, and its top part over hangs. In the sediments, the vertical P-velocity
increases gradually with the depth. One sediment layer (between 2000 m and 3000 m) is
strongly anisotropic. Our aim is to image the flank of the saltdome and the sediment reflector
below the anisotropic layer and near the salt dome accurately. Figure 3 shows a near-offset
section of the synthetic data. Notice the strong energy reflected from the salt flank in the near
offset data.

Figure 4 shows the results of the isotropic migration for this dataset. Figure 4(a) is the
result of the isotropic plane-wave migration in Cartesian coordinates, and Figure 4(b) is the
result of the isotropic plane-wave migration in tilted coordinates. In Figure 4(a), the salt flank
is totally lost. This is because waves related to the salt flank are overturned, and the one-way
wave-equation downward continuation method can not extrapolate them correctly. In Figure
4(b), although a weak steeply dipping reflector can be seen, it is not at the correct position,
because the anisotropy in the sediment layer was neglected.

Figure 5 shows the results of the anisotropic migration for this dataset. Figure 5(a) is the
anisotropic plane-wave migration in Cartesian coordinates, and Figure 5(b) is the anisotropic
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Figure 2: Model of the synthetic dataset. (a) Density model;(b) Velocity model; (c)
Anisotropy parameterε. guojian1-model[ER]
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Figure 3: A near-offset section of the synthetic data.guojian1-nearoffset[ER]

plane-wave migration in tilted coordinates. In Figure 5(a), the top part of the salt flank is
lost due to overturned waves, but the bottom part of the salt flank is correctly imaged, but
is not focused by the isotropic migration (Figures 4(a) and 4(b)). In Figure 5(b), the image
is greatly improved compared to the previous three images. Both the top and bottom parts
of the salt flank are well imaged. In Figure 5(b), the reflectorbelow the anisotropic layer is
stronger and more continuous near the salt flank compared to that in the isotropic migration
result. To check if the reflectors are imaged at the correct positions, we overlay the images with
the density model in Figure 6. Figure 6(a) is the isotropic migration result overlaid with the
density model. Figure 6(b) is the anisotropic migration result overlaid with the density model.
The salt flank matches the density model very well in the imageobtained by the anisotropic
migration, while it deviates from the model in the isotropicone. The flat part of the reflector
below the anisotropic layer is not affected much by the anisotropy. Both the isotropic and
anisotropic migration image it at the correction position.

Figure 7 shows the horizontal angle-domain CIGs at the horizontal locationx = 4000m.
Figure 7(a) is obtained by the isotropic migration, and Figure 7(b) is obtained by the anisotropic
migration. Figure 8 shows the vertical angle-domain CIGs atthe vertical locationz= 1500m.
Figure 8(a) is obtained by the isotropic migration, and Figure 8(b) is obtained by the anisotropic
migration. Although we use the true, vertical P-wave velocity in the isotropic migration, we
find a small curvature in the horizontal angle gathers at the reflector below the anisotropic
layer (atz = 3300 m in Figure 7), and a big curvature in the vertical angle gathers at the salt
flank (x between 1000 m and 1500 m in Figure 8). In the anisotropic migration, the angle
gathers are flat at these locations. The big curvature of the angle gathers at the steeply dipping
reflectors can be used as a tool to estimate the error in the anisotropy parameters used in the
migrations.
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Figure 4: Isotropic plane-wave migration results: (a) in Cartesian coordinates; (b) in tilted
coordinates. guojian1-iso [CR]
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Figure 5: Anisotropic plane-wave migration results: (a) inCartesian coordinates; (b) in tilted
coordinates.guojian1-ani [CR]
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Figure 6: Migration results overlaid with density model: (a) isotropic migration; (b)
anisotropic migration.guojian1-isoanidn[CR]
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Figure 7: Horizontal angle-domain CIGs atx = 4000m: (a) isotropic migration; (b)
anisotropic migration. guojian1-ang4000[CR]

Figure 8: Vertical angle-domain CIGs atz = 1500m: (a) isotropic migration; (b) anisotropic
migration. guojian1-ang1500[CR]



SEP–120 Steeply dipping reflectors in TI media 73

CONCLUSION

We image steeply dipping reflectors in VTI media by anisotropic plane-wave migration in
tilted coordinates. We decompose source and receiver wavefields into plane waves and ex-
trapolate the wavefields with an implicit isotropic operator followed by an explicit anisotropic
correction in tilted coordinates. We apply our method to a synthetic dataset. The results show
that our method can handle overturned waves and accurately image steeply dipping reflectors
in VTI media. We generate angle-domain CIGs by cross-correlation.
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