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Target-oriented wave-equation inversion

Alejandro A. Valenciano, Biondo Biondi, and Antoine Guitton1

ABSTRACT

A target-oriented strategy can be applied to estimate the wave-equation least-squares in-
verse image (̂m) by explicitly computing the Hessian (H). The least-squares inverse image
is obtained as the solution, using a conjugate gradient algorithm, of a non-stationary least-
squares filtering problemHm̂ = mmig (wheremmig is the migration image, and the rows
of the Hessian are non-stationary filters). This approach allows us to perform the number
of iterations necessary to achieve the convergence, by exploiting the sparsity and struc-
ture of the Hessian matrix. The results on a constant velocity model and a model with a
velocity Gaussian anomaly show the validity of the method.

INTRODUCTION

Seismic imaging (migration) operators are non-unitary (Claerbout, 1992) because they depend
on: (1) the seismic experiment acquisition geometry (Nemeth et al., 1999; Duquet and Marfurt,
1999; Ronen and Liner, 2000), (2) the complex subsurface geometry (Prucha et al., 2000;
Kuehl and Sacchi, 2001), and (3) the bandlimited characteristics of the seismic data (Chavent
and Plessix, 1999). Often, they produce images with reflectors correctly positioned but with
biased amplitudes.

Attempts to solve this problem have used the power of geophysical inverse theory (Taran-
tola, 1987), which compensates for the experimental deficiencies (e.g., acquisition geometry,
obstacles) by weighting the migration result with the inverse of the Hessian. However, the
main difficulty with this approach is the explicit calculation of the Hessian and its inverse.

Since accurate imaging of reflectors is more important at thereservoir level, we propose to
compute the Hessian in a target-oriented fashion (Valenciano and Biondi, 2004). This allows
us to reduce the Hessian matrix dimensions. We also exploit the sparsity and structure of the
Hessian matrix to dramatically reduce the amount of computation while constructing it. After,
we compute the least-squares inverse image as the solution of a non-stationary least-squares
filtering problem, by means of a conjugate gradient algorithm.

In this paper, we first discuss the structure and sparsity of the target-oriented Hessian. After
that, we show how to compute the least-squares inverse imageby solving a non-stationary
least-squares filtering problem. We illustrate the methodology with two numerical examples,
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the first in a constant velocity model, and the second in a velocity model with a low velocity
Gaussian anomaly.

LINEAR LEAST-SQUARES INVERSION

Tarantola (1987) formalizes the geophysical inverse problem by giving a theoretical approach
to compensate for the experiment’s deficiencies (e.g., acquisition geometry, obstacles), while
being consistent with the acquired data. His approach can besummarized as follows: given a
linear modeling operatorL to compute synthetic datad,

d = Lm, (1)

wherem is a reflectivity model, and given the recorded datadobs, a quadratic cost function,

S(m) = ‖d−dobs‖
2 = ‖Lm−dobs‖

2, (2)

is formed. The model of the eartĥm that minimizeS(m) is given by

m̂ = (L′L)−1L′dobs (3)

m̂ = H−1mmig, (4)

whereL′ (migration operator) is the adjoint of the linear modeling operatorL, mmig is the
migration image, andH = L′L is the Hessian ofS(m).

The main difficulty with this approach is the explicit calculation of the Hessian inverse. In
practice, it is more feasible to compute the least-squares inverse image as the solution of the
linear system of equations

Hm̂ = mmig, (5)

by using an iterative conjugate gradient algorithm.

Another difficulty with this approach is that the explicit calculation of the Hessian for the
entire model space is unfeasible in practice. In the next section we discuss a way to overcome
this problem.

TARGET-ORIENTED HESSIAN: DIMENSIONS AND STRUCTURE

Since accurate imaging of reflectors is more important in theneighborhood of the reservoir, it
makes sense to restrain the model space to the target area. A way to achieve this objective is to
write the modeling operatorL in a target-oriented fashion and explicitly compute the Hessian.
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Target-oriented Hessian

In general, the synthetic data for one frequency, a shot positioned atxs = (0,xs, ys) and a
receiver positioned atxr = (0,xr , yr ) can be given by a linear operatorL acting on the full
model spacem(x) with x = (z,x, y) (x = (z,x) in 2D) as

d(xs,xr ;ω) = Lm(x) =
∑

x

G(x,xs;ω)G(x,xr ;ω)m(x), (6)

whereG(x,xs;ω) andG(x,xr ;ω) are the Green functions from the shot positionxs and the
receiver positionxr to a point in the model spacex, respectively.

In equation (6), we use two important properties (Ehinger etal., 1996): first, the Green
functions are computed by means of the one-way wave equation, and second, the extrapolation
is performed by using the adequate paraxial wave equations (flux conservation) (Bamberger et
al., 1988).

The quadratic cost function is

S(m) =
∑

ω

∑

xs

∑

xr

‖d−dobs‖
2, (7)

and its second derivative with respect to the model parameters m(x) andm(y) is the Hessian

H(x,y) =
∂

2S(m)

∂m(x)∂m(y)

H(x,y) =
∑

ω

∑

xs

G′(x,xs;ω)G(y,xs;ω)
∑

xr

G′(x,xr ;ω)G(y,xr ;ω), (8)

whereG′(x,xr ;ω) is the adjoint ofG(x,xr ;ω).

Notice that computingH(x,y) in equation (8) needs only the precomputed Green func-
tions at model pointsx andy. Thus, the size of the problem can be considerably reduced by
computing the Green functions only at the target locationxT , reducing equation (8) to

H(xT ,yT ) =
∑

ω

∑

xs

G′(xT ,xs;ω)G(yT ,xs;ω)
∑

xr

G′(xT ,xr ;ω)G(yT ,xr ;ω). (9)

Hessian sparsity and structure

Since the main contributions of the Hessian occurs around the diagonal (Chavent and Plessix,
1999; Valenciano and Biondi, 2004), additional computational savings can be obtain by limit-
ing the computation of equation (9) toyT points close toxT . This reduces equation (9) to

H(xT ,xT +ax) =
∑

ω

∑

xs

G′(xT ,xs;ω)G(xT +ax,xs;ω)
∑

xr

G′(xT ,xr ;ω)G(xT +ax,xr ;ω),

(10)
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whereax = (az,ax,ay) is the “offset" from the pointxT . Thus only a few elements of the
Hessian matrix are computed (non-stationary filter coefficients).

To be able to perform the multidimensional convolution operation in equation (5), the
computed Hessian elements in equation (10) have to be placedon a helix (Claerbout, 1998).
After that, each row of the Hessian matrix is a multidimensional filter applied to the whole
model space.

Chavent and Plessix (1999) qualitatively discuss the amount of the spreading away from
the diagonal of the Hessian matrix. Future research will address the optimal number of filter
coefficients needed to account for the spreading, since thisnumber has a direct impact on the
cost of the method.

NON-STATIONARY LEAST-SQUARES FILTERING

Even though the target-oriented Hessian has a smaller number of rows and columns in equation
(9), its condition number could be high, making the solutionof the non-stationary least-squares
filtering problem in equation (5) unstable. One solution is adding a smoothing regularization
operator to equation (5):

Hm̂−mmig ≈ 0,

εIm̂ ≈ 0, (11)

where the choice of the identity operator (I) as regularization operator is arbitrary. Chang-
ing the ε parameter for such a simple regularization operator is equivalent to stopping the
conjugate gradient solver after a different number of iterations.

A more sophisticated regularization scheme could involve applying an smoothing operator
in the angle (or ray parameter) dimension (Prucha et al., 2000; Kuehl and Sacchi, 2001). More
research need to be done regarding that subject, which is of extreme importance to obtain
stable and meaningful results in real case scenarios.

NUMERICAL EXAMPLES

In this section we show two numerical examples of target-oriented Hessians and the corre-
sponding least-squares inverse images. The first example isa constant velocity model and the
second is a model with a velocity Gaussian anomaly. The second one was designed to study
the effects of uneven illumination due to overburden structure.

Constant-velocity model

Explicitly computing the Hessian is possible when following a target-oriented strategy that
exploits the Hessian sparsity and structure. We created a synthetic dataset, using equation
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6, with a constant-reflectivity flat reflector (atz = 0.8km) in a constant-velocity medium
(v = 2.0km s−1). Assuming a land acquisition geometry, where the shots andreceivers were
positioned every 20m on the intervalx = [−0.8,0.8]km. Valenciano and Biondi (2004) dis-
cuss in detail the banded nature and sparsity of the Hessian matrix for the constant-velocity
model.

Figure 1 shows a 15× 15 coefficient filter at constant depth as thex coordinate moves
from the corner to the center of the acquisition. Figure 1a shows point 1, with coordinates
x = (0.8,−0.6) (corner of the acquisition). Figure 1b shows point 2, with coordinatesx =

(0.8,−0.4). Figure 1c shows point 3, with coordinatesx = (0.8,−0.2). Figure 1d shows point
4, with coordinatesx = (0.2,0) (at the center of the acquisition).

Figure 1: Hessian of the constant-velocity model, (a) point1 x = (0.8,−0.6), (b)
point 2 x = (0.8,−0.4), (c) point 3 x = (0.8,−0.2), and (d) point 4x = (0.2,0).
alejandro1-hesian_phase_const[CR]

Figure 2 shows the envelope of the 15× 15 coefficient filter shown in Figure 1. The
energy of the ellipses become dimer away from the center, indicating that these points have
lower illumination due to the acquisition geometry. To correct this effect we computed the
least-squares inverse image, by the method described in theabove section.

Two different numbers of filter coefficients were used. Figures 3 and 4 show the inversion
results for a filter of 11×11 coefficients, whereas Figures 5 and 6 show the inversion results
for a filter of 15× 15 coefficients. Figure 7 shows a comparison of the best results of both
filter sizes.
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Figure 2: Envelope of the Hessian of the constant-velocity model, (a) point 1x = (0.8,−0.6),
(b) point 2 x = (0.8,−0.4), (c) point 3 x = (0.8,−0.2), and (d) point 4x = (0.2,0).
alejandro1-hesian_const[CR]
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The panels in Figure 3 show the least-squares inverse image for different numbers of iter-
ations for a filter of 11×11 coefficients: 3a for 10 iterations, 3b for 20 iterations, 3c for 100
iterations, and 3d for migration. Notice how the image amplitudes become more even. Figure
4 shows the comparison of the same least-squares inverse image results at the reflector depth.
The image amplitude after 100 iterations is the best result.The conjugate gradient algorithm
further balances the image amplitudes, which reduces the effects of the acquisition geometry
and the bandlimited characteristic of the seismic data.

Figure 3: Constant-velocity inversion using a filter size of11× 11 coefficients: (a) 10 itera-
tions, (b) 20 iterations, (c) 100 iterations, and (d) migration. alejandro1-inv_const_11[CR]

The panels in Figure 5 show the least-squares inverse image for different number of iter-
ations for a filter of 15×15 coefficients: 5a for 10 iterations, 5b for 20 iterations, 5c for 100
iterations, and 5d for migration. Notice again, how the image amplitudes become more even.
Figure 6 shows the comparison of the same least-squares inverse image results at the reflector
depth. The image amplitude after 100 iterations is the best result. The conjugate gradient
algorithm once again further balances the image amplitudes.

Figure 7 compares the migration result to the best inversionresults for filter sizes 11×11
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Figure 4: Amplitudes extracted at
reflector depth from Figure 3, fil-
ter size of 11× 11 coefficients.
alejandro1-inv_const_pp_11[CR]

Figure 5: Constant-velocity inversion using a filter size of15× 15 coefficients: (a) 10 itera-
tions, (b) 20 iterations, (c) 100 iterations, and (d) migration. alejandro1-inv_const_15[CR]



SEP–120 Target-oriented inversion 31

Figure 6: Amplitudes extracted at
reflector depth from Figure 5, fil-
ter size of 15× 15 coefficients.
alejandro1-inv_const_pp_15[CR]

coefficients, 15× 15 coefficients. There is not much difference in the recovered amplitudes,
thus a filter size of 11×11 should be sufficient.

Figure 7: Comparison the migra-
tion result to the best inversion re-
sults for filter sizes 11× 11 co-
efficients and 15× 15 coefficients.
alejandro1-inv_const_filter[CR]

Gaussian anomaly velocity model

We created a synthetic dataset, using equation 6, from a model with a constant-reflectivity flat
reflector lying beneath a Gaussian low velocity anomaly (Figure 8). Again, we assumed a land
acquisition geometry, where the shots and receivers were positioned every 10m on the interval
x = [−3.0,3.0]km.

Figure 9 shows a 15× 15 coefficient filter at constant depth as thex coordinate moves
from the corner to the center of the acquisition. Figure 9a shows point 1, with coordinates
x = (2.0,−2.5) (corner of the acquisition). Figure 9b shows point 2, with coordinatesx =

(2.0,−1.5). Figure 9c shows point 3, with coordinatesx = (2.0,−0.8). Figure 9d shows
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Figure 8: Gaussian anomaly velocity model.alejandro1-bill [ER]

point 4, with coordinatesx = (2.0,0.0) (at the center of the acquisition). Figure 10 shows the
envelope of the 15×15 coefficient filter shown in Figure 9. Differently to the constant velocity
case, the higher energy is at point 3 (x = (2.0,−0.8)) (away from the center). This is due to a
focusing effect created by the Gaussian velocity anomaly. To correct this effect we computed
the least-squares inverse image, by the method described inthe above section.

As with the previous example, two different numbers of filtercoefficients were used. Fig-
ures 11 and 12 show the inversion results for a filter of 11×11 coefficients, whereas Figures
13 and 14 show the inversion results for a filter of 15× 15 coefficients. Figure 15 shows a
comparison of the best results of both filter sizes.

The panels in Figure 11 show the least-squares inverse imagefor different number of iter-
ations for a filter of 11× 11 coefficients: 11a for 10 iterations, 11b for 20 iterations, 11c for
100 iterations, and 11d for migration. Notice how the image amplitudes become more even,
but as the number of iterations increase the result becomes unstable. Figure 12 compares the
same least-squares inverse image results at the reflector depth. The image amplitude after 10
iterations is the best result. The conjugate gradient algorithm further balances the image am-
plitudes, which reduces the effects of acquisition geometry and the bandlimited characteristic
of the seismic data. But is not as good reducing the focusing effect (amplitude anomaly at
x = (2.0,−0.8)).

The panels in Figure 13 show the least-squares inverse imagefor different number of
iterations for a filter of 15×15 coefficients: 13a for 10 iterations, 13b for 20 iterations, 13c for
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Figure 9: Hessian of the Gaussian anomaly velocity model, (a) point 1 x = (2.0,−2.5),
(b) point 2 x = (2.0,−1.5), (c) point 3x = (2.0,−0.8), and (d) point 4x = (2.0,0.0).
alejandro1-hesian_phase_bill_filter[CR]
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Figure 10: Envelope of the Hessian of the Gaussian anomaly velocity model, (a) point 1
x = (2.0,−2.5), (b) point 2x = (2.0,−1.5), (c) point 3x = (2.0,−0.8), and (d) point 4x =

(2.0,0.0). alejandro1-hesian_bill_filter[CR]
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Figure 11: Gaussian anomaly velocity inversion using a filter size of 11×11 coefficients: (a)
10 iterations, (b) 20 iterations, (c) 100 iterations, and (d) migration. alejandro1-inv_bill_11
[CR]

Figure 12: Amplitudes extracted
at reflector depth from Figure 11,
filter size of 11× 11 coefficients.
alejandro1-inv_pp_11[CR]



36 Valenciano et al. SEP–120

100 iterations, and 13d for migration. Notice how the image amplitudes become more even, as
the number of iterations increase. Figure 14 shows the comparison of the same least-squares
inverse image results at the reflector depth. The image amplitude after 100 iterations is the
best result. The conjugate gradient algorithm further balances the image amplitudes, reducing
the focusing effect as well as the effects of the acquisitiongeometry and the bandlimited
characteristic of the seismic data.

Figure 13: Gaussian anomaly velocity inversion using a filter size of 15×15 coefficients: (a)
10 iterations, (b) 20 iterations, (c) 100 iterations, and (d) migration. alejandro1-inv_bill_15
[CR]

Figure 15 the migration result to the 100 iterations inversion results for filter sizes 11×11
coefficients, 15× 15 coefficients. There is a big difference in the recover amplitudes for the
different filter sizes being the 15×15 coefficient filter the one that better reduces the effect of
the focusing effect on the amplitudes. More research needs to be done to find a way toa priori
predict the proper filter size.
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Figure 14: Amplitudes extracted
at reflector depth from Figure 13,
filter size of 15× 15 coefficients.
alejandro1-inv_pp_15[CR]

Figure 15: Comparison the migra-
tion result to the 100 iterations in-
version results for filter sizes 11×11
coefficients and 15× 15 coefficients.
alejandro1-inv_filter[CR]
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CONCLUSIONS

Since accurate imaging of reflections is more important in the neighborhood of the reservoir,
a target-oriented strategy can be applied to estimate the wave-equation least-squares inverse
image by explicitly computing the Hessian. The main contributions of the Hessian occurs
around the diagonal, that is why additional computational savings can be obtain by limiting
the its computation to only few elements around it. The least-squares inverse image is then
computed as the solution, using a conjugate gradient algorithm, of a non-stationary least-
squares filtering problem. This approach allows to perform the number of iterations necessary
to achieve the convergence.

Results on the constant velocity model show that the inversion recovers the correct image
amplitudes. In this case a filter size of 11× 11 is enough to obtain a good result. However,
something different happens in the Gaussian anomaly velocity model case, where the inversion
gives noisy results if a filter size of 11×11 is used. After adding more coefficients to the filter
(filter size of 15×15) a more stable result was obtained.
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