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Tar get-oriented wave-equation inversion

Alejandro A. Valenciano, Biondo Biondi, and Antoine Guitto

ABSTRACT

A target-oriented strategy can be applied to estimate theeveguation least-squares irj
verse imagerf) by explicitly computing the Hessiail). The least-squares inverse image
is obtained as the solution, using a conjugate gradientighge, of a non-stationary least
squares filtering probletAm = mp;g (Wheremp,g is the migration image, and the rows
of the Hessian are non-stationary filters). This approalctwvalus to perform the number
of iterations necessary to achieve the convergence, byitixl the sparsity and struc;
ture of the Hessian matrix. The results on a constant vgloegdel and a model with &
velocity Gaussian anomaly show the validity of the method.

INTRODUCTION

Seismic imaging (migration) operators are non-unitaraé@bout, 1992) because they depend
on: (1) the seismic experiment acquisition geometry (N&raeal., 1999; Duquet and Marfurt,
1999; Ronen and Liner, 2000), (2) the complex subsurfacengeéy (Prucha et al., 2000;
Kuehl and Sacchi, 2001), and (3) the bandlimited charastiesiof the seismic data (Chavent
and Plessix, 1999). Often, they produce images with refiecorrectly positioned but with
biased amplitudes.

Attempts to solve this problem have used the power of geophlyisiverse theory (Taran-
tola, 1987), which compensates for the experimental defitgs (e.g., acquisition geometry,
obstacles) by weighting the migration result with the imeeof the Hessian. However, the
main difficulty with this approach is the explicit calculani of the Hessian and its inverse.

Since accurate imaging of reflectors is more important atebervoir level, we propose to
compute the Hessian in a target-oriented fashion (Valeociend Biondi, 2004). This allows
us to reduce the Hessian matrix dimensions. We also explisparsity and structure of the
Hessian matrix to dramatically reduce the amount of contfmutavhile constructing it. After,
we compute the least-squares inverse image as the soldteonan-stationary least-squares
filtering problem, by means of a conjugate gradient algorith

In this paper, we first discuss the structure and sparsityeafarget-oriented Hessian. After
that, we show how to compute the least-squares inverse itmagelving a non-stationary
least-squares filtering problem. We illustrate the metlhmgiowith two numerical examples,
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the first in a constant velocity model, and the second in acitglonodel with a low velocity
Gaussian anomaly.

LINEAR LEAST-SQUARESINVERSION

Tarantola (1987) formalizes the geophysical inverse gmoldby giving a theoretical approach
to compensate for the experiment’s deficiencies (e.g.,isitigm geometry, obstacles), while
being consistent with the acquired data. His approach cauimenarized as follows: given a
linear modeling operatdr to compute synthetic daty

d=Lm, (1)
wherem is a reflectivity model, and given the recorded ddgg, a quadratic cost function,
S(m) = [|d — dobs|* = IIL M — dobs||, 2)

is formed. The model of the earth that minimizeS(m) is given by

(L'L) 'L dobs 3)
H_lmmig’ 4)

S
[T

whereL’ (migration operator) is the adjoint of the linear modelingematorL, Mpq is the
migration image, an#l = L'L is the Hessian o§(m).

The main difficulty with this approach is the explicit calatibn of the Hessian inverse. In
practice, it is more feasible to compute the least-squanesse image as the solution of the
linear system of equations

by using an iterative conjugate gradient algorithm.

Another difficulty with this approach is that the expliciicalation of the Hessian for the
entire model space is unfeasible in practice. In the nexisewe discuss a way to overcome
this problem.

TARGET-ORIENTED HESSIAN: DIMENSIONS AND STRUCTURE

Since accurate imaging of reflectors is more important imgnighborhood of the reservaoir, it
makes sense to restrain the model space to the target aremy #®wachieve this objective is to
write the modeling operatdr in a target-oriented fashion and explicitly compute thedias
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Target-oriented Hessian

In general, the synthetic data for one frequency, a shotiposd atxs = (0,Xs,Ys) and a
receiver positioned at, = (0,%,,y;) can be given by a linear operatbracting on the full
model spacen(x) with x = (z,x,y) (X = (z,x) in 2D) as

d(xe, X1 w) =Lm(X) =} | G(x,Xs; ) G(X,Xr; @) M(x), (6)

whereG(x, Xs; w) and G(x, X, ; w) are the Green functions from the shot positignand the
receiver positiorx; to a point in the model space respectively.

In equation (6), we use two important properties (Ehingealet1996): first, the Green
functions are computed by means of the one-way wave equatioisecond, the extrapolation
is performed by using the adequate paraxial wave equatilmxsconservation) (Bamberger et
al., 1988).

The quadratic cost function is

Sm)=> "> "> " lld—dobsll”, (7

w Xs Xr

and its second derivative with respect to the model paraswetg) andm(y) is the Hessian

92S(m)
Y= Smegam®)
HxY) = D ) G XXs0)G(Y.Xs0) Y G'(X,X; )Gy, X ), (8)

whereG'(X,X,; w) is the adjoint ofG(X, X, ; ®).

Notice that computingd(x,y) in equation (8) needs only the precomputed Green func-
tions at model pointg andy. Thus, the size of the problem can be considerably reduced by
computing the Green functions only at the target locatipyreducing equation (8) to

Hixryr) =) Y G(x1,Xsi0)G(yT.Xs:0) D G/(XT,Xr; 0)G (YT, % ). 9)

@ Xs Xy

Hessian sparsity and structure

Since the main contributions of the Hessian occurs arouadilgonal (Chavent and Plessix,
1999; Valenciano and Biondi, 2004), additional computaisavings can be obtain by limit-
ing the computation of equation (9) yg points close tot. This reduces equation (9) to

Hxr Xt +a) =Y Y G'(x1,Xs 0)G(XT +ax,Xsi @) D G/ (X7, X5 0)G(XT + 8, X ; ),

@ Xs Xr

(10)
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whereay = (az,ax,ay) is the “offset" from the poinky. Thus only a few elements of the
Hessian matrix are computed (non-stationary filter coeffits).

To be able to perform the multidimensional convolution @pen in equation (5), the
computed Hessian elements in equation (10) have to be ptatadcelix (Claerbout, 1998).
After that, each row of the Hessian matrix is a multidimensaidilter applied to the whole
model space.

Chavent and Plessix (1999) qualitatively discuss the amoiuthhe spreading away from
the diagonal of the Hessian matrix. Future research willesklthe optimal number of filter
coefficients needed to account for the spreading, sincentimber has a direct impact on the
cost of the method.

NON-STATIONARY LEAST-SQUARESFILTERING

Even though the target-oriented Hessian has a smaller mohtmvs and columns in equation
(9), its condition number could be high, making the solutbthe non-stationary least-squares
filtering problem in equation (5) unstable. One solutionddiag a smoothing regularization
operator to equation (5):

elm =~ 0, (12)

where the choice of the identity operatdj &s regularization operator is arbitrary. Chang-
ing the e parameter for such a simple regularization operator isvadgnt to stopping the
conjugate gradient solver after a different number of tieres.

A more sophisticated regularization scheme could invoppyang an smoothing operator
in the angle (or ray parameter) dimension (Prucha et alQ;2Q0ehl and Sacchi, 2001). More
research need to be done regarding that subject, which igtafnee importance to obtain
stable and meaningful results in real case scenarios.

NUMERICAL EXAMPLES

In this section we show two numerical examples of targe¢rded Hessians and the corre-
sponding least-squares inverse images. The first exampleasstant velocity model and the
second is a model with a velocity Gaussian anomaly. The skopa was designed to study
the effects of uneven illumination due to overburden striect

Constant-velocity model

Explicitly computing the Hessian is possible when follog/ia target-oriented strategy that
exploits the Hessian sparsity and structure. We createchthetyc dataset, using equation
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6, with a constant-reflectivity flat reflector (at= 0.8km) in a constant-velocity medium
(v =2.0kms1). Assuming a land acquisition geometry, where the shotseceivers were
positioned every 2éh on the intervak = [—0.8,0.8]km. Valenciano and Biondi (2004) dis-
cuss in detail the banded nature and sparsity of the Hessa@ixnfor the constant-velocity

model.

Figure 1 shows a 1% 15 coefficient filter at constant depth as theoordinate moves
from the corner to the center of the acquisition. Figure lanshpoint 1, with coordinates
x = (0.8,—0.6) (corner of the acquisition). Figure 1b shows point 2Zhvzoordinatex =
(0.8,—0.4). Figure 1c shows point 3, with coordinates (0.8,—0.2). Figure 1d shows point
4, with coordinates = (0.2, 0) (at the center of the acquisition).
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Figure 1: Hessian of the constant-velocity model, (a) pdinx = (0.8,—0.6), (b)
point 2 x = (0.8,—0.4), (c¢) point 3x = (0.8,—0.2), and (d) point 4x = (0.2,0).
alejandrol-hesian_phase_cqr[\@tR]

Figure 2 shows the envelope of the 235 coefficient filter shown in Figure 1. The
energy of the ellipses become dimer away from the centeicatidg that these points have
lower illumination due to the acquisition geometry. To emtrthis effect we computed the
least-squares inverse image, by the method described abthe section.

Two different numbers of filter coefficients were used. FegB and 4 show the inversion
results for a filter of 1 11 coefficients, whereas Figures 5 and 6 show the inversiuitse
for a filter of 15x 15 coefficients. Figure 7 shows a comparison of the besttsestiboth

filter sizes.
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Figure 2: Envelope of the Hessian of the constant-velociigeh (a) point Ix = (0.8,—0.6),
(b) point 2 x = (0.8,—0.4), (c) point 3x = (0.8,—0.2), and (d) point 4x = (0.2,0).
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The panels in Figure 3 show the least-squares inverse inoagiffierent numbers of iter-
ations for a filter of 11x 11 coefficients: 3a for 10 iterations, 3b for 20 iterationsf& 100
iterations, and 3d for migration. Notice how the image atagis become more even. Figure
4 shows the comparison of the same least-squares inverge isults at the reflector depth.
The image amplitude after 100 iterations is the best re3ilé conjugate gradient algorithm
further balances the image amplitudes, which reduces fhetefof the acquisition geometry
and the bandlimited characteristic of the seismic data.
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Figure 3: Constant-velocity inversion using a filter sizelafx 11 coefficients: (a) 10 itera-
tions, (b) 20 iterations, (c) 100 iterations, and (d) mi'gmt\ alejandrol-inv_const_MCR]

The panels in Figure 5 show the least-squares inverse inmaggffierent number of iter-
ations for a filter of 15< 15 coefficients: 5a for 10 iterations, 5b for 20 iterationsf& 100
iterations, and 5d for migration. Notice again, how the imagplitudes become more even.
Figure 6 shows the comparison of the same least-squargséweage results at the reflector
depth. The image amplitude after 100 iterations is the kesilt. The conjugate gradient
algorithm once again further balances the image amplitudes

Figure 7 compares the migration result to the best invenseults for filter sizes 1k 11



30 Valenciano et al. SEP-120

. Ry
P RN
R D Y

P B DA .
N AR
N SN
° yavy: U
e i -
o \ Y
/ \
/ \
\

> o ; 3
Figure 4. Amplitudes extracted @ >
reflector depth from Figure 3, fil= ||~¢/

ter size of 11x 11 coefficients.s &

alejandrol-inv_const_pp_1[CR] / \
/ P —
20
100

-0.8 -06 -04 -0.° 0 0.2 0.4 0.6 0.8
x (km)

N\,

20

o

—0.6 —-0.2

0.2 0.6

0

() 2
80 ¥O0

0

([H}UZ
80 ¥O0

0

(ul}{)z
80 V7O

—-0.6 —-0.2 0.2 0.6

0

(ULDUZ
80 7O

(d)

Figure 5: Constant-velocity inversion using a filter sizelbfx 15 coefficients: (a) 10 itera-
tions, (b) 20 iterations, (c) 100 iterations, and (d) mi'gnatt‘ alejandrol-inv_const_]@CR]
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coefficients, 15« 15 coefficients. There is not much difference in the recavamplitudes,
thus a filter size of 1k 11 should be sufficient.
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Gaussian anomaly velocity model

We created a synthetic dataset, using equation 6, from almattiea constant-reflectivity flat
reflector lying beneath a Gaussian low velocity anomalyfe@). Again, we assumed a land
acquisition geometry, where the shots and receivers wesigquoed every 10n on the interval

x =[-3.0,3.0]km.

Figure 9 shows a 1% 15 coefficient filter at constant depth as theoordinate moves
from the corner to the center of the acquisition. Figure Sanshpoint 1, with coordinates
x = (2.0,—2.5) (corner of the acquisition). Figure 9b shows point Zhwvgoordinatex =
(2.0,—1.5). Figure 9c shows point 3, with coordinates= (2.0,—0.8). Figure 9d shows
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Figure 8: Gaussian anomaly velocity modelejandrol-bil| [ER]

point 4, with coordinatex = (2.0,0.0) (at the center of the acquisition). Figure 10 shtve
envelope of the 15 15 coefficient filter shown in Figure 9. Differently to the abant velocity
case, the higher energy is at point3£ (2.0,—0.8)) (away from the center). This is due to a
focusing effect created by the Gaussian velocity anomalycorrect this effect we computed
the least-squares inverse image, by the method descrilikd above section.

As with the previous example, two different numbers of fitteefficients were used. Fig-
ures 11 and 12 show the inversion results for a filter ok11l coefficients, whereas Figures
13 and 14 show the inversion results for a filter ofxX135 coefficients. Figure 15 shows a
comparison of the best results of both filter sizes.

The panels in Figure 11 show the least-squares inverse ifoagéferent number of iter-
ations for a filter of 11x 11 coefficients: 11a for 10 iterations, 11b for 20 iteratiakikc for
100 iterations, and 11d for migration. Notice how the imaggktudes become more even,
but as the number of iterations increase the result beconstahle. Figure 12 compares the
same least-squares inverse image results at the reflegtbr. dehe image amplitude after 10
iterations is the best result. The conjugate gradient @lgarfurther balances the image am-
plitudes, which reduces the effects of acquisition geoyreetd the bandlimited characteristic
of the seismic data. But is not as good reducing the focudiiegteamplitude anomaly at
x =(2.0,—0.8)).

The panels in Figure 13 show the least-squares inverse ifeagéifferent number of
iterations for a filter of 15 15 coefficients: 13a for 10 iterations, 13b for 20 iteratidr&c for
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Figure 9: Hessian of the Gaussian anomaly velocity modélp@nt 1 x = (2.0,—2.5),
(b) point 2 x = (2.0,—1.5), (c) point 3x = (2.0,—0.8), and (d) point 4x = (2.0,0.0).
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Figure 11: Gaussian anomaly velocity inversion using arfilize of 11x 11 coefficients: (a)
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100 iterations, and 13d for migration. Notice how the imagghktudes become more even, as
the number of iterations increase. Figure 14 shows the cosgpeof the same least-squares
inverse image results at the reflector depth. The image amdpliafter 100 iterations is the
best result. The conjugate gradient algorithm furtherrizda the image amplitudes, reducing
the focusing effect as well as the effects of the acquisiggometry and the bandlimited
characteristic of the seismic data.
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Figure 13: Gaussian anomaly velocity inversion using arfilize of 15x 15 coefficients: (a)
10 iterations, (b) 20 iterations, (c) 100 iterations, an)ir‘(ﬁgration.‘alejandrol-inv_bill_1$
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Figure 15 the migration result to the 100 iterations inv@rsiesults for filter sizes 11 11
coefficients, 15« 15 coefficients. There is a big difference in the recover @noqges for the
different filter sizes being the 1515 coefficient filter the one that better reduces the effect of
the focusing effect on the amplitudes. More research neduks tlone to find a way @ priori
predict the proper filter size.
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CONCLUSIONS

Since accurate imaging of reflections is more important érteighborhood of the reservoir,
a target-oriented strategy can be applied to estimate the-aquation least-squares inverse
image by explicitly computing the Hessian. The main contitns of the Hessian occurs
around the diagonal, that is why additional computatioaalrggs can be obtain by limiting
the its computation to only few elements around it. The lsgsiares inverse image is then
computed as the solution, using a conjugate gradient #dfgoyriof a non-stationary least-
squares filtering problem. This approach allows to perfdrertumber of iterations necessary
to achieve the convergence.

Results on the constant velocity model show that the ineen®covers the correct image
amplitudes. In this case a filter size of 4111 is enough to obtain a good result. However,
something different happens in the Gaussian anomaly \glocdel case, where the inversion
gives noisy results if a filter size of 211 is used. After adding more coefficients to the filter
(filter size of 15x 15) a more stable result was obtained.
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