—30-

Chapter 3. The Wave Equation Approach to Multiples Modelling and

Suppression

This chapter will be devoted to the implementation of the
scalar wave equation as a descriptor of seismic wave fields. We
will start by considering coordinate transformations that yield
approximate equations for propagating up and downgoing waves in
free space. Following this, we will couple up and downgoing waves
to obtain equations valid for solving the forward or inverse problems.
Finally, the theory will be illustrated with some synthetic examples.

The equations which we will deduce and solve in this chapter

are
' — v 31 PR RNST 1 | A z'
Uz't' = - 5sec GUX,X, -cx'z )Dt,(x -2tand z',z',t -2cosej;0 (3-1a)
and
p" = !-sec36 p" (3-1b)
Z"t" 2 X"X"

where c(x',z') 1is the reflection coefficient, v the compressional
velocity, 6 the propagation angle and the subscripts denote partial
derivatives. These equations represent the essence of the wave
modelling and data processing schemes of this thesis and are thought

to yield the most accurate deterministic multiple reflection suppression
method of reflection seismic data processing. Nevertheless, it was
still necessary to make many approximations. The derivation of

(3-1a,b) will elucidate the accuracy of the approach. After completing

it we will show how these equations are solved.
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The inclusion of the wave equation in our scheme comes as a
natural extension of our previous ray theory approximation. In
effect, if we delete the term containing the second derivative in x ,
which is responsible for the diffraction of the acoustic energy, we

are left within the framework of a ray approximation
U;'t' = - D:. (3~2a)

D'Z'"t" = 0 (3-2b)

The first equation for U then can be integrated by t'
Representing the remaining derivative in 2z' through the
difference U1 - U2 (omitting for simplicity the x', t' wvariables
and assuming Dz' = 1 ), equation (3-2a) becomes U2 = Ul + ¢y Dl s
which is equation (2-5a) of Chapter 2. On the other hand, equation
(3-2b) implies D" = constant, which corresponds to equation (2-5b).
It is the possibility of including new properties such as diffractions
and geometrical spreading which represents a major advantage over the
simplified model of Chapter 2. However, important elements such as
shear waves and absorption are still neglected.

We differentiate between two kinds of equations: the uncoupled
and the coupled equations. The former refers to the equation that
controls the propagation of each separate wave field ( U or D )
through a homogeneous region with no reflection or transmission

effects. The latter describes the propagation through inhomogeneous

media, where reflection coefficients couple up and downgoing waves.
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Actually we have already obtained these two types of equations in
Chapter 2, where (2-5b) was an uncoupled equation for D-waves and
(2-5a) a coupled equation for U-waves. From their definition, as
well as from the experience of Chapter 2, it follows that the struc-
ture of the coupled equations will be highly dependent on the model
that we choose for the propagating medium.

3.1. Uncoupled Equations and Coordinate Transformations

There are two main objectives which we wish to accomplish through
the coordinate transformation. First we want a transformation that
yields separate equations for downgoing and upcoming waves. Second,
we want a transformation which takes care of all spatial and temporal
translations of the wave field, leaving the wave equation to do only
diffraction.

It is not difficult to show that both objectives can be

accomplished through the transformation

x' = x + z tan @ (3-3a)
z' = 2z (3-3b)
e = + X svin 0 + 4 (iros & Ft (3-3c)

where the sign '-"

corresponds to downgoing waves, the "+" to
upcoming waves and 0 is the propagation angle (from the vertical)

for a plane wave. If we refer only to downgoing waves and, as before,

denote partial derivatives through subscripts so that
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U = 3 Uu = U (3-4)

x; st = 1, -tan 9, O (3-5a)

z; z.t = 0,1, 0 (3-5b)
H b

; 2t = - sin6/v, -cos8 /v , 1 (3-5¢)
3 ’

By using (3-5), we can now transform the 2-D scalar wave

equation

2 -
P T By ~ (V)P = 0, (3-6)

where P 1is the pressure, into the new coordinate system. Defining
Q as the transformed wave field and noting that the wave field is
invariant under coordinate transformations ( P(x,z,t) = Q(x',z',t') ),

equation (3-6) becomes

2
v sec” 8 Qx'x' +v Qz,z, - 2\rtan()Qx,z, - 2cos 9 Qz't' =0 (3-7)

The intermediate steps leading to (3-7) can be found in
Appendix 1. 1In order to achieve the separation into U and D
waves, we would like the obtained equation to be first order in z°
The standard procedure, known as paraxial or parabolic approximation,
is to drop the Qz'z' term. The dispersion relationship of the

remaining equation shows that its validity is then limited to an



~34—

aperture angle of approximately + 15 degrees off the main direction

of propagation 6 . Besides, the same dispersion relation indicates
that the term proportional to Qx'z' is only significant for angles

of propagation larger than 40 degrees, which is, in any case, sort of an
upper limit for the other more general approximations involved in the
theory. Neglecting then both terms, equation (3-7) can be finally

written as

Qi = (W/2) sec’s q,_, (3-8a)

If we desire a better approximation to the wave equation than
(3-8a), we could estimate Qz'z' from (3-8a) (after integrating by
t' and differentiating by z' ) and substitute back into (3-7).
However, to keep the discussion simple, we will leave equation (3-8a)

-

as it is. It is interesting to notice that by choosing z' = z sec3 S

we get:

Qz't' = (v/2) QX'X' (3-8b)

where the leading coefficient of Qx'x' is no longer angle dependent.

3.2. Coupled Equations

The equations that we obtained in 3.1 referred to waves propagating
through a homogeneous region where up and downgoing waves are uncoupled.
However, in order to solve the forward or inverse problem we have to
consider the fact that the U and D wave fields will couple through
the reflection coefficients of the medium.

For the case of stratified media, Claerbout [5] showed that the

coupled equations for U and D waves can be written as
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(o]
I

- (iw/v) cos ¢ U - (IZ / 21) (U+D) (3-9a)

(]
I

(iw/v) cos ¢D - (Iz /2I) (U+D) (3-9b)

In equations (3-9) U and D have been Fourier transformed in
x and t , ¢ 1is interpreted as the deviation angle from the normal

direction of propagation 6 , and I is the impedance defined as

I = p v/cos¢ (3-10)

with p Dbeing the density. The use of equations (3-9) in our case

is not totally justifiable since they are obtained by requiring that
the medium characteristics be z-dependent only, whereas our theory
allows for small lateral variations of the reflection coefficients.
Nevertheless we will assume that they represent a reasonable approxi-
mation in the case of slowly varying media. This assumption will be
reinforced at the end by the fact that, in the limiting case of a ray
approximation, the coupled equations to be deduced from (3-9) give
equations identical to those obtained in the previous chapter. The
idea is then, to estimate ¢ as well as the Fourier transforms of

U and D in relation to the frame of the waves of interest (U

or D) . These estimations are substituted in (3-~9) and the obtained
equation is Fourier transformed back into the original frame. We will
start by making the same assumptions 0f Chapter 2 in relation to the
propagating medium, that is, we will ignore transmission losses
(eliminates U from the second term in (3-9a)) and intrabed multiples
(eliminates the second term completely in (3-9b)). Thus, as before,

the only coupling that remains is in the upcoming wave equation
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Uz = - (iw/v) cos¢U - (Iz /2I) D (3-11)

We illustrate the above procedure with the transformation (3-5)

for upcoming waves

x' = x+ z tan?® (3-12a)

z' = z (3-12b)
+ _ xsinb® z cos §

t = v + - + t (3-12¢)

By requiring as before, that the wave fields be invariant
(P(x,2z,t) = U'(x',2z"',t")) and by using the Jacobian corresponding
to (3-12), the first derivatives of U can be expressed in the new

frame as

Ux = U;, - Ué, (sinb) /v (3-13a)
— ] 1 1 -

Uz = Ux' tang + Uz, + Ut' (cosB) /v (3-13b)

Ut = é, (3-13c)

In order to estimate the Fourier transform of UZ and the wave-
number-frequency relationships in both frames (observer and upcoming),

we introduce in (3-13) a monochromatic solution of the type
exp (ikx - iwt) (3-14)

We then obtain
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ik U = (ik' + iw' (sind)/v ) U' (3-15a)
UZ = U;. + (ik' tan 8- iw' (cos®) /v ) U' (3-15b)
-iw U = -ip' U' (3-15¢c)

The cosine of ¢ in terms of the wavenumber k appears

as:

Vorr t s 1/2
cos¢ = [1 - (%352 ]l/2 - [1- (k V+$'31n9 )2] (3-16)

Expanding (3-16) to the second order about k'v/w' , we obtain

1 ]
cos ¢ = cose—-k,v tan 6 - (k,v)2 L (3-17)
w w
2cos O
Its inverse to first order is
— — 1 3
cos 1¢ & cos le {1 +-Ei%£ - sin b ] (3-18)
cos ©
Inserting (3-13b) and (3-17) into (3-11) we obtain:
2 I
R A P SRR S 1 _
Uz' 2 sec™ 8 o U > T D (3-19)

If now we differentiate (3-10) and substitute (3-18) into the expression

for 1 and Iz , we get:

I (pv) '
z Z k _
T = ) +-57 secH tanf v, (3-20)
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The first term of this relation is associated with the reflection
coefficient for vertical propagation, while the second term accounts
for its angular dependence. Finally, to obtain the upcoming wave
equation in time domain, we insert (3-20) into (3-19) and inverse
Fourier transform

3 l (pv)z'

' = _ v '
Uz't' 5 sec eUx'x'

D""

- - l n -
2 v Dt 2 vz,sec6 tansé Dx" (3-21)

This equation is the coupled version of (3-8). The absence of the
Ux'z' term indicates that thé approximations that were made when
computing cos ¢ and its inverse, left us within the scope of the
approximation discussed in section 3.1. For practical purposes we
would like equation (3-21) to be expressed in a single coordinate
frame. That implies expressing D" in terms of the upcoming
coordinates x', z', t' . 1In order to do that we need the transforma-

tion between up and downgoing waves, which is:

x" = x' -2 2" tano (3-22a)
z" = z! (3-22b)
t" = t' - 2 z'"(cosB) /v (3-22¢)

Then equation (3-21) can be finally written as:

3 (pv)z'

vy, = - Y sec”s ', ., - l-~-—-————-D",(x'—22'tane,z',t'—Zz'cose/v) -
z't 2 x'x 2 (pv) t

- %—vz,secetanelﬁb (x'-2z'tan6, z', t'-2z'cosb/v) . (3-23)
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To solve the forward or inverse problem we can complement the
transformation (3-12) and the coupled equation (3-23) with the

corresponding uncoupled equation for downgoing waves:

11 3 " -
Dz" (v/2) sec” 8 Dx"x" . (3-24)

t"

Equations (3-23) and (3-24) are the equivalents of equations (2-7) in
Chapter 2.

3.3. Computer Algorithms

The pair of equations (3-23) and (3-24) obtained in the last
section suffice to solve the forward and inverse problem within the
scope of the approximations involved. We will simplify the discussion
further by assuming that the reflection coefficient is independent
of angle. Neglecting then the last term in equation (3-23) and expres-
sing the vertical reflection coefficient (pv)z/2(pv) as c(x,z) ,

equations (3-23) and (3-24) become

U;'t' = - %-sec3e U‘x'x' - c(x'z')DE.(x‘—Ztanﬁ z',z',t"'-2cos8z"/v) (3-25)
and
D" = Y seco D" (3-26)
2" 2 sec """

In order to use these equations as practical operators capable
of extrapolating wave fields, either we have to find integral solutions
for U and D or we have to approximate them through finite elements
or finite differences. We shall take the last alternative. The first
step in this direction is to discretize the coordinates and wave

variables as we did in Chapter 2
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X = jbDx; z = kDzj; t = nDt
and
U(x,z,t) = U(jDt, k Dz, nDt) ——> UE 3
b

(3-27)

(3-28)

Since in equation (3-25) we have to express the downgoing wave in

terms of upcoming coordinates we will need, in addition, the discrete

version of the transformation (3-22) between U and D waves

i" = 3' - 2(Dz/Dx) tan 9 k'
k" = k'

"o v _ Dz 1
n n 2 v Dt cos 8k

(3-29a)

(3-29b)

(3-29c)

If we now define the sampling intervals Dx , Dz and Dt such that

2 tan ® (Dz/Dx) = f
and
. Dz
2 cos ev D - e

where f and e are integers, the transformation (3-29) reduces

to

j" = j' - f k'
k." = k.'
n" = n' - e k'

(3-30a)

(3-30b)

(3-31a)

(3-31b)

(3-31c)
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The next step is to introduce the unit delay operator Z =

exp(-iwDt) and the unit shift operator in the z direction

W = exp(—ikzDz), such that
n _ n-1 n - n _
Z Dk,j = Dk,j and W Dk,j Dk—l,j (3-32)

With these definitions we can obtain by following the Crank-Nicholson

scheme discrete centered approximations of the derivatives in 2z and

t
- Zp = 2 1W.m
D, = 520 = 7 17w Pk, (3-33a)
t T el T Dbt 1z Pk, j (3-33b)

For the second derivative in x we can use

n n n
e T B W i S o1

(0x) 2 (Dx) 2

(3-34)

A better approximation results if, instead, we discretize the second

derivative as

1 § X
D = X D (3-35)
XX

2
(Dx) 1-b SXX

where b 1is a constant which when made equal to 1/12 gives fourth
order accuracy in x . This may be important when working with real
seismograms, where the data tends to be undersampled in x . Otherwise,

b can be used to simplify the difference equations.
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Substituting these difference approximations into equations (3-25)

we will have

S '

(1-Z) (1-W) _n' - _ XX n _1 1-Z _a"
(1+2) (1) Yk',5" e Uer,3' T2 Skryr T3z D,y (3730
where
= X~QE—%; sec3 ) (3-37)
8 (Dx)

With the help of (3-31) we can express D in the upcoming coordinates.

If in addition we define a source term according to

Dn'—ek'
,j' k' 9j'-fk'

(w}
I

(1/2) Cpr (3-38)

and drop the primes, equation (3-36) becomes

n
K, J

n

(l—Z)(l—W)(l—béxX)U K, 3

- n - - — -—
= a(l+Z)(l+W)Uk,j (1-z) (1+w) (1 bGXx)S (3-39)

Upon substituting (3~33), this equation can be rewritten as

n-1 _
k+1,3

n n

[1+@b)s, 10U, ; = [1-(ath)s ](Uk+l’j-FUE:§ )-[1+(a-b)s 17U

n n-1 Sn--l ]

T Sk,5 7Sk, " 5k, 3

- (a-bs_) [ (3-40)

n
S, 5

Making a = b (by properly choosing Dz or by dropping fourth order

accuracy in x ), equation (3-40) finally simplifies into an explicit

equation

n-1
k+1,j

B+t Ly

n
Uir, 5 T 9%, 3

U . =[1—2a6XX](

K, j (1-asd

n
) G, 3+

+ Sn _ Sn—l Sn—l )

i3 S,g T Bk, (-4
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Another way to represent the delay operators in equation (3-36),

is by rewriting it as follows

W) (1 no_ 0 (1+Z) (1+W) n o _ _ n _
(1-w) (1 chXX)Uk’j a 17 6xxUk,j (1+W) (1 béxx)sk,j (3-42)
Now we can expand (l—Z)_l in a power series
a2t = 1+z+22 4234 (3-43)

Substituting back into (3-42) and letting as before a = b , we finish

with an integrated form of equation (3-36)

n-1 + Un—l )

n
2asd by (Uk,j K+, j

U n -
X’ "k+l,] XX g

n = —
ki o (1 ZaGX )u

n n
- (l—a&xx) (Sk,j-+sk+l,j) (3-44)

Similarly, the corresponding difference approximations for the

uncoupled equation (3-26) are

n _ n-1 . n _ nn-1 _
Dk,j = (l-ZaGXX) (Dk’j-i-Dk__l’j ) Dk—l,j (3-45)
and
n n o n—-i n-i
Dk,j =(1l~-2a Gxx) Dk—l, . —2a cSXX ii]_ (Dk,j +Dk—l,j ) (3-46)

A detailed discussion about the stability of these and other related

equations can be found in [9]. T will just mention the two most



b=

important constraints. First, the constant a has to be less or

equal 4 (a < 4). Secondly, the only valid unknowns with time

. n+1 n+1 . . .
running forward are Uk,j and Dk+1,j , while with time running
backwards - Un . and Dn . » This last constraint is related to

k+1,]j k,J

causality and has been discussed previously by Claerbout [5] and Riley
[17].

Provided we guarantee stability, any of the equations presented
here (3-41, 44, 45 and 46) can be used as a continuation equation to
extrapolate up and downgoing waves from the surface back into the earth
and vice~versa. I did not try to solve the inverse problem in the
diffraction case, but the 2-D forward and 1-D inverse cases, indicate
that the technique is closely related to that of Chapter 2. To imple-
ment the computer algorithm we have to supplement these equations
with the corresponding initial and boundary conditions which, in

principle, are identical to those of Chapter 2

Uo,j = RJ (3-47a)
n n n

D.. = B, -R, 3-47b
0,3 h| N ( )
n = —

Uk,j = 0 for n <k (3-47¢)

where, as before, R 1is the recorded surface seismogram and B is

the source waveform. In addition, due to the presence of the diffraction
term, we will need side boundary conditions. Here we have several
choices: 1) we can assume that U and D vanish at the side boundaries,
2) we can assume a zero slope of the wave fields or, 3) if we want to

avoid reflections off the sides, we can try the more sophisticated
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absorbing boundary conditions discussed in [7]. For the computation of
the synthetic examples shown in the next section, a zero slope condi-
tion was used. The remaining algorithm was close to that discussed

by Riley with the exception that in the slanted case we have to
consider an extra shift in x when comparing the U and D grids
during the computation. Higher order algorithms are discussed in [10].

3.4. Synthetic Examples

Figure 3.la shows the same model used in Chapter 2, that is, a
dipping, undulating sea bottom, overlying a faulted reflector. The
sequence illustrates only the forward problem. The vertical as well
as the slanted seismograms are included. Although the computer
algorithm used in this case was different from that of Chapter 2,
the 1-D vertical and slanted seismograms (Figures 3.1b and 3.1lc)
are replicas of those obtained with the Noah algorithm. The only
difference is in relation to the angle of propagation, which in this

case allows for a better splitting of the peg-legs ( PL through

11
PL23 ). The peg-legs at the right appear to separate due to lateral
variations of the sea floor, while the peg-legs on the left clearly

show distinct arrival times. The multiple reflections also show
differences in arrival times when the vertical and the slant seismograms
are compared. This is especially noticeable in the region where the
second order multiple (MZ) intersects the faulted reflector (PZ) .

The oscillations of the multiples in the slant case are smaller in

amplitude compared to those of the vertical seismogram.
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In the 2-D vertical seismogram (Figure 3.1d) we can observe the
diffraction hyperbolas, which are usually symmetrical, in the regions
where the acoustic energy focuses. Reflections are present as well, at
the side boundaries due to the zero slope boundary condition that was
used. Also a relatively large amount of numerical dispersion can be
noted, indicating the need for better difference approximations.
Comparison with the 2-D slant seismogram shows the loss of symmetry
in the diffraction hyperbolas, which tend to be skewed and higher in
amplitude toward the side from which they are being illuminated. The
separation of the peg-legs is not as clear as in the 1-D case due to
the masking by the diffractions.

Figure 3.2 is a repeat of the previous sequence but for a model
that mimics a bright spot. Again, the complex separation of the peg-
legs in the slanted case is clearly observed. The intersection of the
second order multiple (MZ) with the top of the spot, also indicates
differences in arrival times in both cases (vertical and slanted). 1In
the 2-D seismograms (3.2d and 3.2e), the diffractions have the same

asymmetrical pattern of the previous example.



Part I1

THE PRACTICAL PROBLEM
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Chapter 4. Wave Stacks

In the last two chapters we presented the basic theory for the modelling
and suppression of multiples, and in the next two chapters we consider some
aspects of the practical implementation of this theory. We will limit the
discussion to the most fundamental points, which in our case are the source
waveform estimation and the definition of valid input data. The former will
be discussed in Chapter 5 while the latter is the subject of the present one.

In this chapter we will review Schultz's concept of wave stacks [21] as
a means of defining data that is compatible with our assumptions and approxima-
tions. Following this, we will introduce the concept of optimum stacking
intervals, which are the time windows over which the slant stack produces its
most reliable results. This concept will help us to determine the values of
the ray parameter p to choose in order to enhance a given sector of interest
in the final stacked section. The chapter ends with a field data example.

Of the two problems considered by us, the forward and the inverse, it is
the inverse problem that represents the practical interest. In effect, standard
seismic exploration already furnishes us with the result of a real forward
problem: the recorded seismograms. However, we must question whether these
reflection seismograms can be considered as input data which are consistent with
the assumptions of our theory.

The present theory in its two versions, 1-D and 2-D, was developed for
plane waves propagating down or up from the earth. The data as recorded in the
field in the form of a common shot point (CSP) gather do not fit this assumption,
since they correspond to a propagating spherical wave. On the other hand, due

to the improved quality and reduced amount of information, it would be desirable
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to work directly with stacked sections as input data. In this sense

we would like to think of the stacked section as an observed wave field,
which is the product of a real physical experiment and thus, subject to
physical equations such as the ones discussed in earlier chapters.
Unfortunately, it is not difficult to realize that the standard stacked
section -~ the common midpoint (CMP) (also called common depth point

(CDP) ) section —-- does not correspond to any physically realizable
experiment and, therefore, cannot be used as input data in a deterministic
procedure such as the one we are proposing. A new approach to this
problem is described in the next paragraph.

4.1. Wave Stacks

Based on the superposition and reciprocity principles Claerbout
[4] and Schultz [21] introduced the concept of Wave Stacks as a means
to define data valid for wave equation processing. The idea behind
this concept is that by stacking all the traces in a CSP gather we will
be simulating the experiment of a geophone placed at the source location
and shots placed at every geophone location which are fired in a pattern
(time delays) defined by the stacking trajectories (Figure 4.1). If
we just sum the traces without delays it would be equivalent to stacking
along horizontal lines in the x,t plane (Figure 4.la), and we will be
simulating a horizontal plane wave propagating vertically along the
z axis. 1If instead, we add along slanted lines (Figure 4.1b), we will
be reproducing the result of a slanted wavefront. We could also think
of adding along other lines in order to simulate more complex wavefronts.
The same Reciprocity Principle allows for reversing the direction of
propagation of the plane wave if we start from a common geophone gather

instead of a CSP gather.
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The important fact is that all these stacks can be interpreted as
the result of a real experiment and therefore used as input data (more
precisely, as boundary conditions) for a wave equation type of processing.
Schultz [21] gives an extensive description of the details of these stacks
and their practical implementation. I will just mention three points
that are important for their actual computation.

1) In order to avoid aliasing due to the finite length of the
Fresnel Zone (the region of coherent summation) along the stacking
direction, an anti-aliasing window has to be introduced as shown in
Figure 4.2,

2) It is necessary as well, to taper the data at both ends of the
summation path to minimize end effects.

3) It is more advantageous to describe the wave stacks in terms
of the ray parameter p (p = sinf/v) than in terms of the propagation
angle 8 . The reason is that in the case of variable velocities, p
remains constant while 6 varies along the ray path.

The next section deals with the question of selecting the optimum
parameters to produce a slant stack, corresponding to a slanted plane
wave that leaves the surface at an angle 6 .

4.2. Slant Stacks and Intervals of Optimum Stacking

The choice of different values of p will enhance different time
intervals of a slant stacked section. This is because we are limited
by several factors among which are: 1) the finite character of the data,
especially along the x axis; 2) aliasing problems because of carrying
the sum too far out off the Fresnel zone at some points; 3) the presence
of the anti-aliasing window which, especially at early times, tends to

restrict the sum to a region inside the Fresnel zone. Intuitively we
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X
h
anti-aliasing window
tapering function
stacking

trajectory

t)

Figure 4.2. Anti-aliasing windows and tapering functions. Due to the finite
extension of the Fresnel zone along the stacking path, an anti-aliasing
window has to be introduced in order to avoid aliasing. Moreover, it is

convenient to taper the sum at the extremes of the stacking line in order

to minimize end effects.
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may guess that larger values of p will yield better results at earlier
times and vice versa. The idea then is to produce several p-stacks
whose intervals of optimum stacking overlap and, on the whole, cover
the full time axis. Afterwards, all these stacks could be combined
linearly, applying weighting functions to each one, with maximum values
along these intervals.

We will discuss the case of a constant-velocity, flat layered
medium. For the simplicity of the mathematical equations, we will
refer to the angle of propagation 6 instead of the ray parameter p .
Let us start by reviewing the equations used in the stacking process

Figure 4.3):

tp = f/pv2 = (f/v)sine, (4-1)

defines the direction of propagation;

t, = t'"+pf =t'+ f sind/v , (4-2)

defines the direction of stacking; and

2 2 2,2
t,” = gt £, (4-3)

defines a given event (flat reflector). Additionally we have

t' = t, cosb. (4-4)
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Figure 4.3. Slant stacks and Fresnel zones. The Fresnel zone is
defined along the stacking line as a segment whose ends are half
a period away (e) from the reflection hyperbola (te) . tp

is related to the ray parameter p and defines the point of tangency

between the event arrivals (te) and the stacking path (ts) .
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The Fresnel zone is then defined along the stacking path tS as
a region bounded by coordinates (fl, tl) and (fz, t2) such that the
vertical distance ¢ (units of time) between tS and te equals
half the period of the source waveform. In order to define the
boundaries of this zone, what we then need are equations for fl and

f2 (or tl and t2 ) as functions of t' and e . From Figure 4.1

and equations (4-2,3), after some algebra, we get

(v/cosze){sine(e+t') - [e(s+2t')]l/2} R (4-5)

fl(t')

(v/cosze){sine(e+t') + [e(s+2t')]1/2} R (4-6)

f2(t')

Further, we can make one of the two following assumptions:

1) We consider that, for a fixed f , e increases linearly
with time: ¢ = €9 + bt! (eo , b—const.), so that the attenuation
parameter Q = ¢/t' = const. (since bt'>>¢_. most of the time), in

0

which case (4-5,6) become

£, , = (/cos?®){[1+(1/Q) 1sine ¥ [1+(2/Q 12} . (4-7)

For larger t' these equations become straight lines and could
define a natural anti-aliasing window.
2) We might also consider & = const. with time, in which case

(4-5,6) become (assuming e>>t' )

f = (gv/cosze) [ t'sin6 + (25:t')l/2

1,2 I . (4-8)
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The shapes of these curves are illustrated in Figure 4.4. The
first approach (Q = const.) will probably model better primary
arrivals. For one of the waveform estimation techniques to be discussed
in the next chapter, however, where only paths within the water layer
are considered, we should take the second approach ( ¢ = const. )
Following these ideas, we will consider that portion of the stacking
area that is inside the Fresnel zone and is bounded by the given data
(the shaded area in Figure 4.4). This region defines an interval in
time along the stacking axis At' = té - ti for which the summation
will include only given data. If we want to compute this interval

quantitatively, then we need inverse equations to (4-5,6) . That means

t' as a function of f along the Fresnel curves
' - 2 . . 1/2
t] 5 = (1/v)tan®¢ {ev+f sinf+ (ev/cosd)[14+(2 f sind/ev)] 1 (4-9)
b

For a given 6 and a fixed offset, these solutions give two values
of t along the stacking axis t' . Replacing f by Fl , the initial
offset of the gather, and by F2 ,» the final (farthest) offset, in
equation (4-9), we can then find the coordinates ti and té which
define the interval of optimum stacking in Figure 4.4.

As an example of practical interest, let us consider data for
which Fl = 200m, F2 =2550m (48 traces 50-m apart), and ¢ = 0.05
sec (for a 100-msec period waveform). The results for two different

velocities v = 1500 m/sec and v = 2000 m/sec, are shown in Tables

4.1 and 4.2. Such tables eventually will allow us to choose the most
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Figure 4.4. Intervals of optimum stacking. The slant stack will yield
its best results in a time interval ti - té defined through the
intersection of the Fresnel boundaries and the extreme offsets of the

data ( F, and F2 ).
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n angle (p-value) for a given time interval of

interest. We should mention here that these intervals could be

increased by extrapolating traces at the left of F

1 and the right of

F2 » but this would imply a good knowledge of velocity.

We could also define an interval of optimum stacking in relation

to the anti-aliasing window, as that interval of the time axis within

which our window includes the whole Fresnel zone but does not go too

far off it (the shaded area in Figure 4.5). Without going through the

algebra, we can find

between t and t
s e

a relation that links t' and the distance §

at the boundaries of the stacking lines, given by

the anti-aliasing window (Figure 4.6)

£'T = (cos6 (1-sind sined) /{[ 1 +sin6¥(sine - 2 sing) 1

where 6+ = 0§ + AB

When & = ¢ , L

condition defines our

/2-c036})6t .

and 6 =0 - Af

he window will include the entire Fresnel zone. This

ti in Figure 4.5. As the stack proceeds to later

times, & becomes larger than ¢ and aliasing will be introduced.

We must then attempt

. + .1 s .
setting 6 =re (r >1) , such that within the interval from t!

up to té we have a
et

to define a lower boundary té (Figure 4.5) by

1

tolerable amount of aliasing. As it turns out,

* t'  in relation (4-10), so by making 6+ = re we merely set

t) =r t; (for a fixed ©6 and A8 ). The choice of a particular

2 1

value for r depends on how much aliasing we can tolerate. Table 4.3

contains the results
waveform's period).

stacking.

for r = 2 (that means 6+ = 2¢ , the full

This will set sort of a minimal interval of optimum

(4-10)
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Figure 4.5. Anti-aliasing window and intervéls of optimum stacking.
Since the anti-aliasing and the Fresnel windows do not coincide, an
interval of optimum stacking also can be defined in relation to the anti-
aliasing window as the time interval for which both windows are close

enough.
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TABLE 4.1 (v = 1500 m/sec)

P ] t.! t2' D!
(sec/m) 1
: -4 (deg) (sec) (sec) (sec)
x 10 S .
0.58 5. 15.99 8.63 0.00*
1.16 10 4.62 5.26 0.64
1.73 15 2.30 3.70 1.40
2.28 20 1.40 2.80 1.40
2.82 25 0.95 2.15 1.20
3.33 30 0.68 1.68 1.00
3.82 35 0.50 1.30 0.80
4.29 40 0.39 1.00 0.60

*No solution

Table 4.1. 1Intervals of optimum stacking for different p-values. ti and
té are the beginning and the end of the intervals respectively. Dt' is
their extension. The values displayed correspond to data for which the
nearest offset is 200m and the farthest 2550m (48 traces, 50m apart). ¢
is considered to be .005 sec (100 ms period waveform) and the velocity

equal to 1500m/sec.

TABLE 4.2 (v = 2000 m/sec)

) 0 t.' ti Dt'

(sec/m) 1 ~
_4 (deg) (sec) (sec) (sec)

x 10

0.44 5 15.30 5.75 0.00%*

0.87 10 4.30 3.60 0.00%*

1.29 15 2.09 2.57 0.48

1.71 20 1.25 1.94 0.69

2.11 25 0.84 1.50 0.66

2.50 30 0.60 1.17 0.57

2.87 35 0.44 0.91 0.45

3.21 40 0.34 0.70 0.36

*No solution

Table 4.2. Same as Table 4.1 but for a velocity of 2000 m/sec.
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If tables like 4.1 and 4.2 allow us to choose the best value of
8 (or p ) for a given time interval, tables like 4.3 will allow us
to choose the more convenient window. Finally, we may remark that the
anti-aliasing window does not have to be symmetrical. In any case,
relation (4-10) can easily be extended to incorporate such an eventuality.

Figure 4.7 includes three different stacks of real data. TFor the
computation, I have assumed a velocity of 2000 m/sec, which is a lower
bound of the actual velocities in the section. According to Table 4.2,
for an angle of propagation of 20° (shallow depths), we shall expect an
interval of optimum stacking that goes from 1.25 to 1.94 sec. As can
be seen from Figure 4.7(c), this prediction correlates pretty well with
the shown section. Figures 4.7 (a,b) correspond to angles of 10° and
15° . Here we are considering greater depths where the velocities are
on the order of 4000-5000 m/sec; thus, Table 4.2 is no longer a good
approximation, and we see that the intervals of optimum stacking are
higher (in time) than the predicted values.

4.3. A Field Example

As a final illustration of slant stacks we present a more detailed
analysis of the data introduced in Tables 3.1 and 3.2. The data set
is a marine seismic reflection line, collected in the Gulf of Alaska.
The data was originally furnished in the form of 48 trace CSP gathers
with a geophone spacing of 50 m . In the next chapter we will be
concentrating on a piece of this data where the first sea bottom reflection
arrives around 1.2 sec and the corresponding multiple around 2.4 sec.
Hence, we will slant stack the data in such a way that the interval of

optimum stacking is tuned to the time interval containing the first
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Figure 4.6. Anti-aliasing windows and reflection events. While the
separation € between the extremes of the Fresnel boundaries and the
reflection hyperbolas is the same at both ends, the separation §
between the anti-aliasing window and the same events may not be equal at

both ends.
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TABLE 4.3
' ' 1
0 D6 tl t2 Dt

(deg) (deg) (sec) (sec) (Séé)

10 10 3.24 6.48 3.24
15 10 3.12 6.24 3.12
15 15 1.42 2.84 1.42
20 10 2.95 5.90 2.95
20 15 1.34 2.68 1.34
20 20 0.78 1.56 0.78
25 10 2.75 5.50 2.75
25 15 1.25 2.50 1.25
25 20 0.73 1.46 0.73
25 25 0.48 0.96 0.48
30 10 2.51 5.02 2.51
- 30 15 1.14 2.28 1.14
30 20 0.67 1.34 0.67
30 25 0.44 0.88 0.44
30 30 0.32 0.64 0.32
35 10 2.25 4.50 2.25
35 15 1.03 2.06 1.03
35 20 0.60 1.20 0.60
35 25 0.40 0.80 0.40
35 30 0.30 0.60 0.30

Table 4.3. Intervals of optimum stacking for different anti-aliasing
windows. 6 1is the propagation angle, D6 1is the width of a
)

symmetrical window around 6 . ti sty and Dt' have the same

connotation as in Tables 4.1 and 4.2 .
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FIGURE 4.7—(a) Slant stack for v = 2000 m/s, 6 = 10° (p= 0.87X 1o-f s/m);
(b) Slant stack for v = 2000 m/s, 6 = 15° (p= 1.29x10"7 s/m);
(c) Slant stack for v = 2000 m/s, 6 = 20° (p= 1.71x10"% s/m).
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primary and its corresponding multiple. These two reflections involve
only paths within the water layer, so the assumption of a constant
velocity of about 1500 m/sec should be a good approximation. According
to Table 4.1 the best p-value for this time interval is p = 2.28 x 10_4
sec/m which implies a departure angle of 20 degrees for the slanted

wave. For this choice of p the interval of optimum stacking lies
between 1.4 and 2.8 seconds. Table 4.3 indicates an anti-aliasing

window aperture between 10° and 15° should be used.

The original data was slant stacked with the parameters outlined
above and the result is shown in Figure 4.8. Besides the anti-aliasing
window, a tapering function (a cosine bell) was applied along the
stacking trajectory. The resulting section simulates the reflections from
a slanted plane wave propagating from left to right at an angle of 20°
as indicated in the upper left cormer of this figure. The effects of
the slanted propagation can be noticed in at least two instances. They
are:

1) In region A, at the end of the slope (1.2 sec), the first
multiple (A') 1is shifted almost 20 traces in the direction of propaga-
tion.

2) The diffraction hyperbolas (h) are clearly skewed and larger
in amplitude toward the side of the source (left side). This is the same
effect present in the 2-D synthetics of Figures 3.1 and 3.2.

Finer effects such as the multiples arriving at times that are not

equal to twice the primary arrival times are discussed in the next chapter.
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Figure 4.8. Slant stacked section for a plane wave propagating from
right to left at an angle of 20° from the vertical. The values for
p (p=2.28 % 1074 sec/m) and the width of the anti-aliasing window
( +15° ) were chosen to enhance the time interval from 1.2 to 2.4
sec. Notice that the diffraction hyperbolas (h) are skewed and
larger in amplitude toward the left as in the 2-D synthetics of Figure
3.1 and 3.2. The section is displayed in the slanted frame, so the
end of the slope of the multiple (A') 1is shifted almost 20 traces

to the right from the corresponding point on the primary (A)
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For comparison, Figure 4.9 displays a slant stacked section
for p=1.16 x 10—4 sec/m (6= 10° ) and anti-aliasing window
asymmetrically centered around 6 (-10°, +15°) . The shift between
A and A' for this case is of about 10 traces and the diffraction

hyperbolas are almost symmetrical in relation to the t-axis .
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Figure 4.9. Same as Figure 4.8 but for an angle of propagation of
10°. 1In this case the diffraction hyperbolas are almost symmetric

and the shift between A and A' is about 10 traces.
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