next up previous print clean
Next: 2D finite-difference solution to Up: Riemannian wavefield extrapolation Previous: Riemannian wavefield extrapolation

2D point-source ray coordinates

For the case of 2D point-source ray coordinates the acoustic wave weqrc.3d takes the form  
 \begin{displaymath}
\frac{1}{\AA J}
\lb \eone{\lp \frac{J}{\AA} \done{\UU}{\qt} ...
 ...one{\UU}{\qg} \rp}{\qg} \rb 
= - \frac{\ww^2}{ v^2\oft} \UU \;,\end{displaymath} (77)
where, by definition,

Å& = & ^2 + ^2 =v ,
J& = & ^2 + ^2 .

The extrapolation axis is $\qt$ (one-way traveltime from the source) and $\qg$ is the shooting angle at the source.

We can expand the parentheses in weqrc.2d.t
\begin{displaymath}
\frac{1}{v^2} \dtwo{\UU}{\qt} 
 + \frac{1}{v J} \done{\lp J/...
 ... \frac{1}{J^2} \dtwo{\UU}{\qg}
= - \frac{\ww^2}{v^2\oft} \UU \;\end{displaymath} (78)
and make the notations

&=& 1Å^2 ,
&=& 1ÅJ JÅ ,
&=& 1ÅJ ÅJ ,
&=& 1 J^2 ,

from which the acoustic wave equation for 2D point-source ray coordinates becomes:
\begin{displaymath}
\ctt \dtwo{\UU}{\qt} +
\ct \done{\UU}{\qt} +
\cg \done{\UU}{\qg} +
\cgg \dtwo{\UU}{\qg} = - \frac{\ww^2}{v^2} \UU \;.\end{displaymath} (79)
The 2D dispersion relation is
\begin{displaymath}
- \ctt \kqt^2
+i\ct \kqt
+i\cg \kqg 
- \cgg \kqg^2
= - \ww^2 s^2 \;,\end{displaymath} (80)
from which we can obtain the one-way wave equation for 2D point-source ray coordinates:
\begin{displaymath}
\kqt = i \frac{\ct}{2\ctt} \pm
\sqrt{
\frac{\lp\ww s\rp^2}{\...
 ...}\rp^2
+i \frac{\cg }{\ctt}\kqg 
- \frac{\cgg}{\ctt}\kqg^2
}\;.\end{displaymath} (81)


next up previous print clean
Next: 2D finite-difference solution to Up: Riemannian wavefield extrapolation Previous: Riemannian wavefield extrapolation
Stanford Exploration Project
11/4/2004