next up previous print clean
Next: Mixed domain Up: Sava: Riemannian wavefield extrapolation Previous: Space-domain finite-differences

Mixed domain -- pseudo-screen

The pseudo-screen solution to equation (9) derives from a first-order expansion of the square-root around a0 and b0 which are reference values for the medium characterized by the parameters a and b:
\begin{displaymath}
k_\tau\approx {k_\tau}_0+ \left. \done{k_\tau}{a} \right\ver...
 ...\done{k_\tau}{b} \right\vert _{a_0,b_0} \left (b-b_0\right )\;.\end{displaymath} (24)
The partial derivatives relative to a and b, respectively, are:
\begin{eqnarray}
\left. \done{k_\tau}{a} \right\vert _{a_0,b_0} 
 &=& \omega\fra...
 ...\frac{a_0}{b_0} \left (\frac{b_0k_\gamma}{a_0 \omega}\right )^2\;.\end{eqnarray} (25)
(26)
Therefore, the pseudo-screen equation becomes
\begin{displaymath}
k_\tau\approx {k_\tau}_0+ \omega\left (a-a_0\right )+ 
 \ome...
 ...}{a_0}\right )^2\left (\frac{ k_\gamma}{ \omega}\right )^2} \;.\end{displaymath} (27)
If we make the notations
\begin{displaymath}
\left\{ \begin{array}
{l}
\nu = a_0\left [c_1\left (\frac{a}...
 ... 1
\\ \rho=3b\left (\frac{b_0}{a_0}\right )^2\end{array}\right.\end{displaymath} (28)
we obtain the mixed-domain pseudo-screen solution to the one-way wave equation in Riemannian coordinates:
\begin{displaymath}
k_\tau\approx {k_\tau}_0+ \omega\left (a-a_0\right )+ 
 \ome...
 ... )^2}
 {\mu-\rho\left (\frac{ k_\gamma}{ \omega}\right )^2} \;.\end{displaymath} (29)

next up previous print clean
Next: Mixed domain Up: Sava: Riemannian wavefield extrapolation Previous: Space-domain finite-differences
Stanford Exploration Project
10/23/2004