next up previous print clean
Next: Mixed domain Up: Sava: Riemannian wavefield extrapolation Previous: REFERENCES

Space-domain finite-differences

Starting from equation (9), based on the Muir expansion for the square-root Claerbout (1985), we can write successively:
\begin{eqnarray}
k_\tau&=& \omega a \sqrt{1- \left (\frac{b k_\gamma}{a \omega}\...
 ...c{b }{a }\right )^2\left (\frac{ k_\gamma}{ \omega}\right )^2} \;.\end{eqnarray} (19)
(20)
(21)
If we make the notations
\begin{displaymath}
\left\{ \begin{array}
{l}
\nu = - c_1a \left (\frac{b }{a }\...
 ...\\ \rho= b\left (\frac{b }{a }\right )^2\;. \end{array}\right. \end{displaymath} (22)
we obtain the finite-differences solution to the one-way wave equation in Riemannian coordinates:
\begin{displaymath}
k_\tau\approx \omega a + \omega\frac{ \nu \left (\frac{ k_\g...
 ... )^2}
 {\mu-\rho\left (\frac{ k_\gamma}{ \omega}\right )^2} \;.\end{displaymath} (23)

next up previous print clean
Next: Mixed domain Up: Sava: Riemannian wavefield extrapolation Previous: REFERENCES
Stanford Exploration Project
10/23/2004