next up previous print clean
Next: Computing the traveltime: an Up: Liner and Vlad: Multiple Previous: Cascading image-construction operations

Computing the traveltime: the theory

Let us denote by n a value smaller 1 less than the total number of bounces of the wave in the earth. Let us pretend ``not to know'' that the horizontal coordinates of S and G are -h and h, respectively, and denote them with s and g instead, since we will later need a more general expression that can be differentiated with respect to these variables. We start by generating the sequences $\phi_i$ and li, according to (5) and (6), and keeping in mind the nonphysical prependix $\phi_0=-\frac{\pi}{2}$.

Using the fact that n is always even because the total number of bounces inside the earth is always odd, and substituting into (25), we find the image cascaded through n reflection operations from the source to be  
 \begin{displaymath}
{\bf q}_n^S = s \left[ {\begin{array}
{*{20}c}
{-\sin\beta_n...
 ..._j} \\ {\left(-1\right)^j \cos\beta_j} \\ \end{array}} \right].\end{displaymath} (27)
The receiver image is obtained from a single reflection operation, through the last reflecting interface:  
 \begin{displaymath}
{\bf q}_1^G=g\left[ {\begin{array}
{*{20}c}{\cos2\phi_{n+1}}...
 ...{-\sin\phi_{n+1}} \\ {\cos\phi_{n+1}}
 \\ \end{array}} \right].\end{displaymath} (28)
The traveltime is the distance between ${\bf q}_n^S$ and ${\bf q}_1^G$divided by the velocity. This distance will be computed as the magnitude of the vector ${\bf q}_n^S-{\bf q}_1^G$. By making the notations  
 \begin{displaymath}
{\bf u}_1 = \frac{2}{v}\left\{\sum\limits_{j=0}^{n-1} l_{n-j...
 ...i_{n+1}} \\ {-\cos\phi_{n+1}}
 \\ \end{array}} \right]\right\},\end{displaymath} (29)
 
 \begin{displaymath}
{\bf u}_2=\frac{1}{v}\left[ {\begin{array}
{*{20}c}
{-\sin\beta_n} \\ { \cos\beta_n} \\ \end{array}} \right],\end{displaymath} (30)
 
 \begin{displaymath}
{\bf u}_3=-\frac{1}{v}\left[ {\begin{array}
{*{20}c}{\cos2\phi_{n+1}} \\ {\sin2\phi_{n+1}}
 \\ \end{array}} \right],\end{displaymath} (31)
we can write:  
 \begin{displaymath}
t = \left\vert{\bf u}_1+s{\bf u}_2+g{\bf u}_3\right\vert.\end{displaymath} (32)
In particular, for s=-h and g=h and  
 \begin{displaymath}
{\bf u}_4={\bf u}_2-{\bf u}_3=\frac{1}{v}\left[
 {\begin{arr...
 ...left(-\beta_n\right)+\sin2\phi_{n+1}}
 \\ \end{array}} \right],\end{displaymath} (33)
the traveltime can be written as  
 \begin{displaymath}
t = \left\vert{\bf u}_1-h{\bf u}_4\right\vert.\end{displaymath} (34)
This vector magnitude can be computed using scalar products:  
 \begin{displaymath}
t=\sqrt{\left[{\bf u}_1-h{\bf u}_4\right]\cdot\left[{\bf u}_1-h{\bf u}_4\right]}\end{displaymath} (35)
or it can be written as  
 \begin{displaymath}
t^2 = {\bf u}_4\cdot{\bf u}_4\left(h-\frac{{\bf u}_1\cdot{\b...
 ...eft({\bf u}_1\cdot{\bf u}_4\right)^2}{{\bf u}_4\cdot{\bf u}_4},\end{displaymath} (36)
which is the equation of a hyperbola with the apex at  
 \begin{displaymath}
h_{apex}=\frac{{\bf u}_1\cdot{\bf u}_4}{{\bf u}_4\cdot{\bf u}_4},\end{displaymath} (37)
 
 \begin{displaymath}
t_{apex}= \sqrt{{\bf u}_1\cdot{\bf
 u}_1-\frac{\left({\bf u}_1\cdot{\bf u}_4\right)^2}{{\bf u}_4\cdot{\bf u}_4}}.\end{displaymath} (38)


next up previous print clean
Next: Computing the traveltime: an Up: Liner and Vlad: Multiple Previous: Cascading image-construction operations
Stanford Exploration Project
10/23/2004