next up previous print clean
Next: About this document ... Up: Biondi and Tisserant: 3-D Previous: Examples of 3-D ADCIGs

REFERENCES

Aminzadeh, F., Burkhard, N., Long, J., Kunz, T., and Duclos, P., 1996, Three dimensional SEG/EAGE models - an update: The Leading Edge, 2, 131-134.

Biondi, B., and Palacharla, G., 1996, $\mbox{3-D}$ prestack migration of common-azimuth data: Geophysics, 61, no. 6, 1822-1832.

Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: 69th Ann. Internat. Meeting, Soc. of Expl. Geophys., Expanded Abstracts, 1723-1726.

Biondi, B., and Shan, G., 2002, Prestack imaging of overturned reflections by reverse time migration: 72nd Ann. Internat. Meeting, Soc. of Expl. Geophys., Expanded Abstracts, 1284-1287.

Biondi, B., and Symes, W. W., 2003, Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging: Geophysics: submitted for publication.

Biondi, B., and Vaillant, L., 2000, 3-D wave-equation prestack imaging under salt: 70th Ann. Internat. Meeting, Soc. of Expl. Geophys., 906-909.

Biondi, B., Tisserant, T., and Symes, W., 2003, Wavefield-continuation angle-domain common-image gathers for migration velocity analysis: 73rd Ann. Internat. Meeting, Soc. of Expl. Geophys., 2104-2107.

Biondi, B., 2003, Equivalence of source-receiver migration and shot-profile migration: Geophysics, 68, 1340-1347.

Brandsberg-Dahl, S., de Hoop, M., and Ursin, B., 1999, Velocity analysis in the common scattering-angle/azimuth domain: 69th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1715-1718.

Brandsberg-Dahl, S., de Hoop, M. V., and Ursin, B., 2003, Focusing in dip and AVA compensation on scattering-angle/azimuth common image gathers: Geophysics, 68, 232-254.

Claerbout, J. F., 1985, Imaging the Earth's Interior: Blackwell Scientific Publications.

Clapp, R., and Biondi, B., 2000, Tau domain migration velocity analysis using angle CRP gathers and geologic constraints: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., 926-929.

Clapp, R. G., 2001, Geologically constrained migration velocity analysis: Ph.D. thesis, Stanford University.

de Bruin, C. G. M., Wapenaar, C. P. A., and Berkhout, A. J., 1990, Angle-dependent reflectivity by means of prestack migration: Geophysics, 55, no. 9, 1223-1234.

de Bruin, C., 1992, Linear AVO inversion by prestack depth migration: Ph.D. thesis, Delft University.

Etgen, J., 1990, Residual prestack migration and interval velocity estimation: Ph.D. thesis, Stanford University.

Liu, W., Popovici, A., Bevc, D., and Biondi, B., 2001, 3-D migration velocity analysis for common image gathers in the reflection angle domain: 69th Ann. Internat. Meeting, Soc. of Expl. Geophys., Expanded Abstracts, 885-888.

Meng, Z., Bleistein, N., and Valasek, P., 1999a, 3-D analytical migration velocity analysis, Part II: Velocity gradient estimation: 69th Ann. Internat. Meeting, Soc. of Expl. Geophys., 1731-1734.

Meng, Z., Bleistein, N., and Wyatt, K., 1999b, 3-D analytical migration velocity analysis, Part I: Two-step velocity estimation by reflector-normal update: 69th Ann. Internat. Meeting, Soc. of Expl. Geophys., 1727-1730.

Mosher, C. C., Foster, D. J., and Hassanzadeh, S., 1997, Common angle imaging with offset plane waves: 67th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1379-1382.

Mosher, C., Jin, S., and Foster, D., 2001, Migration velocity analysis using common angle image gathers: 71th Ann. Internat. Mtg., Soc. of Expl. Geophys., 889-892.

Ottolini, R., and Claerbout, J. F., 1984, The migration of common-midpoint slant stacks: Geophysics, 49, no. 03, 237-249.

Prucha, M., Biondi, B., and Symes, W., 1999, Angle-domain common-image gathers by wave-equation migration: 69th Ann. Internat. Meeting, Soc. Expl. Geophys., Expanded Abstracts, 824-827.

Rickett, J., and Sava, P., 2002, Offset and angle-domain common image-point gathers for shot-profile migration: Geophysics, 67, 883-889.

Sava, P., and Fomel, S., 2003, Angle-domain common-image gathers by wavefield continuation methods: Geophysics, 68, 1065-1074.

Schultz, P. S., and Claerbout, J. F., 1978, Velocity estimation and downward-continuation by wavefront synthesis: Geophysics, 43, no. 4, 691-714.

Stolk, C. C., and Symes, W. W., 2004, Kinematic artifacts in prestack depth migration: Geophysics, 69, 562-575.

Stork, C., 1992, Reflection tomography in the postmigrated domain: Geophysics, 57, 680-692.

Wapenaar, C. P. A., and Berkhout, A. J., 1987, Full prestack versus shot record migration: 69th Ann. Internat. Meeting, Soc. of Expl. Geophys., Expanded Abstracts, Session:S15.7.

Xie, X. B., and Wu, R. S., 2002, Extracting angle domain information from migrated wavefield: 72th Ann. Internat. Mtg., Soc. Expl. Geophys., 1360-1363.

Xu, S., Chauris, H., Lambare, G., and Noble, M. S., 2001, Common-angle migration: A strategy for imaging complex media: Geophysics, 66, 1877-1894.

A In this Appendix we derive the expression for the residual moveout (RMO) function to be applied to 3-D ADCIGs computed by wavefield continuation.

We start from the 2-D expression for RMO, as derived by Biondi and Symes (2003):  
 \begin{displaymath}
{\bf \Delta n}_{\rm 2D-RMO}=
\frac{\rho-1}
{\cos\alpha_x{'}}...
 ...a}{\left(\cos^2\alpha_x{'}- \sin^2\gamma\right)}
z_0\; {\bf n},\end{displaymath} (24)
In 3-D, this relationship is valid on the tilted plane shown Figure 3, where the migrated depth of the normal incidence event z0 is now the depth along the tilted plane z'0. Therefore, the migrated depth z0 needs to be scaled by a factor of $1/\cos \alpha_y{'}$,where $\alpha_y{'}$ is the inclination of the tilted plane. In 3-D equation (24) becomes:
   \begin{eqnarray}
\lefteqn{
{\bf \Delta n}_{\rm RMO}=
}
\nonumber
\\ &&
\frac{\rh...
 ...amma}{\left(\cos^2\alpha_x{'}- \sin^2\gamma\right)}
z_0\; {\bf n}.\end{eqnarray}
(25)
When $\alpha_x{'}$ and $\alpha_y{'}$ are available, the RMO function could be directly evaluated using the expression in equation (25). However, in several situations it is more useful to express the RMO function explicitly as a function of the geological dip $\alpha$,the azimuth angle of the normal to the geological dip $\eta$,and the azimuth angle of the reflected event $\phi$(see Figure 13). To derive the desired expression, we use the following two trigonometric relationships among the angles:  
 \begin{displaymath}
\cos \alpha= \cos \alpha_x{'}\cos \alpha_y{'},
\;\;\;\;\;\ {...
 ...;\ 
\sin \alpha_x{'}= \sin \alpha\cos \left( \eta- \phi\right).\end{displaymath} (26)

Substituting equations (26) into equation (25), we obtain the following final result:  
 \begin{displaymath}
{\bf \Delta n}_{\rm RMO}=
\frac{\rho-1}
{\cos\alpha}
\frac{\...
 ...2 \left( \eta- \phi\right)- \sin^2\gamma\right)}
z_0\; {\bf n}.\end{displaymath} (27)


next up previous print clean
Next: About this document ... Up: Biondi and Tisserant: 3-D Previous: Examples of 3-D ADCIGs
Stanford Exploration Project
5/23/2004