next up previous print clean
Next: Finite-difference solution to the Up: Sava and Fomel: Riemannian Previous: WKBJ asymptotic solutions to

2-D point-source ray coordinates

For the case of 2-D point-source ray coordinates the acoustic wave equation (6) takes the form  
 \begin{displaymath}
\frac{1}{\AA J}
\left[\frac{\partial } {\partial \t } \left(...
 ...
= - \frac{\omega^2}{v^2\left(\t ,\gamma\right)} \mathcal{U}\;,\end{displaymath} (31)
where, by definition,
\begin{eqnarray}
\AA & = & 
\sqrt{ \left(\frac{\partial z}{\partial \t } \right)...
 ...t)^2 + 
 \left(\frac{\partial x}{\partial \gamma } \right)^2 } \;.\end{eqnarray}
(32)
The extrapolation axis is $\t$ (one-way traveltime from the source) and $\gamma$ is the shooting angle at the source.

We can expand the parentheses in equation (31)
\begin{displaymath}
\frac{1}{v^2} \frac{\partial^2 \mathcal{U}}{\partial \t^2} 
...
 ...}
= - \frac{\omega^2}{v^2\left(\t ,\gamma\right)} \mathcal{U}\;\end{displaymath} (33)
and make the notations
\begin{eqnarray}
\c_{\t\t}&=& \frac{1}{\AA^2} \;,\nonumber \\ \c_{\t }&=& \frac{...
 ...{J}\right) \;,\nonumber \\ \c_{\gamma\gamma}&=& \frac{1}{ J^2} \;,\end{eqnarray}
(34)
from which the acoustic wave equation for 2-D point-source ray coordinates becomes:
\begin{displaymath}
\c_{\t\t}\frac{\partial^2 \mathcal{U}}{\partial \t^2} +
\c_{...
 ...{U}}{\partial \gamma^2} = - \frac{\omega^2}{v^2} \mathcal{U}\;.\end{displaymath} (35)
The 2-D dispersion relation is
\begin{displaymath}
- \c_{\t\t}k_\t^2
+i\c_{\t }k_\t
+i\c_{\gamma}k_\gamma
- \c_{\gamma\gamma}k_\gamma^2
= - \omega^2\ss^2 \;,\end{displaymath} (36)
from which we can obtain the one-way wave equation for 2-D point-source ray coordinates:
\begin{displaymath}
k_\t= i \frac{\c_{\t }}{2\c_{\t\t}} \pm
\sqrt{
\frac{\left(\...
 ...}}k_\gamma
- \frac{\c_{\gamma\gamma}}{\c_{\t\t}}k_\gamma^2
}\;.\end{displaymath} (37)
C


next up previous print clean
Next: Finite-difference solution to the Up: Sava and Fomel: Riemannian Previous: WKBJ asymptotic solutions to
Stanford Exploration Project
10/14/2003