next up previous print clean
Next: 2-D point-source ray coordinates Up: Sava and Fomel: Riemannian Previous: REFERENCES

WKBJ asymptotic solutions to the acoustic wave-equation in 3-D Riemannian spaces

Neglecting wave propagation in the directions orthogonal to $\zeta$, one can reduce the wave equation (6) to the form of the ordinary differential equation  
 \begin{displaymath}
 \frac{1}{\AA\,J}\,\frac{d}{d\,\zeta}\,
 \left(\frac{J}{\AA}...
 ...}}{d\,\zeta^2} +
 \frac{\omega^2}{v^2}\,\mathcal{U}\approx 0\;.\end{displaymath} (25)
The high-frequency (WKBJ) asymptotics for the solution of equation (25) can be obtained by using a trial solution $\mathcal{U}= A\,e^{i\,\omega\,\phi}$, substituting it in equation (25) and evaluating terms with the same order of $\omega$. The highest asymptotic order yields an equation for the phase function $\phi$: 
 \begin{displaymath}
 -\frac{1}{\AA^2}\,\left(\frac{d\,\phi}{d\,\zeta}\right)^2 + 
 \frac{\omega^2}{v^2} = 0\;.\end{displaymath} (26)
The next asymptotic order produces an equation for the amplitude function A:  
 \begin{displaymath}
 \frac{1}{\AA J}\,\frac{d\,(J/\AA)}{d\,\zeta}\,
 \frac{d\,\p...
 ...ta} + 
 \frac{1}{\AA^2}\,\frac{d^2\,\phi}{d\,\zeta^2}\,A = 0\;.\end{displaymath} (27)
Rearranging equation (26) to the form  
 \begin{displaymath}
 \frac{d\,\phi}{d\,\zeta} = \pm \frac{\AA}{v}\end{displaymath} (28)
and equation (27) to the form  
 \begin{displaymath}
 \frac{d\,(\log{A})}{d\,\zeta} = 
 - \frac{1}{2}\,\left[
 \f...
 ...ta}
 + \frac{d\,\left(\log{(\AA/v)}\right)}{d\,\zeta}\right]\;,\end{displaymath} (29)
we can solve them explicitly to obtain the WKBJ approximation for the wave traveling preferentially in the $\zeta$ direction:  
 \begin{displaymath}
 \mathcal{U}_1 \approx \mathcal{U}_0\,\left(\frac{v_1\,J_0}{...
 ...
\int\limits_{\zeta_0}^{\zeta_1} \frac{\AA}{v}\,d\zeta
\right]}\end{displaymath} (30)
In the case of the ray coordinate system, equation (30) corresponds to the Green's function approximation commonly employed in Kirchhoff imaging.

Accounting for the wave propagation in the directions different from $\zeta$and constructing the solution numerically by finite differences allows us to account for the finite-bandwidth wave propagation effects.

B


next up previous print clean
Next: 2-D point-source ray coordinates Up: Sava and Fomel: Riemannian Previous: REFERENCES
Stanford Exploration Project
10/14/2003