next up previous print clean
Next: Conclusion Up: Shan and Biondi: Residual Previous: Amplitude preserving one-way wave

WKBJ and its first order approximation

In this section, we demonstrate that the first order approximation of WKBJ is the same as the amplitude preserving one-way wave equation for v=v(z).

The one-way wave equation with the WKBJ amplitude correction is  
 \begin{displaymath}
P(z+\Delta z)=\sqrt{\frac{k_z(z+\Delta z)}{k_z(z)}}e^{ik_z\Delta z}P(z).\end{displaymath} (7)
The WKBJ amplitude correction term $\sqrt{\frac{k_z(z+\Delta z)}{k_z(z)}}$ can be rewritten as  
 \begin{displaymath}
\sqrt{\frac{k_z(z+\Delta z)}{k_z(z)}}=e^{\frac{1}{2}\ln \frac{k_z(z+\Delta z)}{k_z(z)}}.\end{displaymath} (8)
Then $k_z(z+\Delta z)$ in equation (8) can be linearized to $k_z(z)+\frac{\partial k_z}{\partial z}\Delta z$, so we have
\begin{displaymath}
\frac{1}{2}\ln \frac{k_z(z+\Delta z)}{k_z(z)}
 \approx\frac{...
 ...}\ln (1+\frac{1}{k_z}\frac{\partial k_z}{\partial z}\Delta z). \end{displaymath} (9)
From

\begin{displaymath}
\ln (1+x)=x-x^2+\cdots,\end{displaymath}

and

\begin{displaymath}
\ln(1+x)\approx x,\end{displaymath}

we have
\begin{displaymath}
\frac{1}{2}\ln (1+\frac{1}{k_z}\frac{\partial k_z}{\partial ...
 ...frac{1}{2}\frac{1}{k_z}\frac{\partial k_z}{\partial z}\Delta z.\end{displaymath} (10)
Because
\begin{displaymath}
\frac{1}{k_z}\frac{\partial k_z}{\partial z}
 =\frac{\partial}{\partial z}\ln k_z,\end{displaymath} (11)
and from the dispersion relation $k_z=\sqrt{\frac{\omega^2}{v^2}-k_x^2}$, we have
\begin{displaymath}
\frac{1}{2}\frac{1}{k_z}\frac{\partial k_z}{\partial z}\Delt...
 ...partial z}\ln\left( \frac{\omega^2}{v^2}-k^2_x \right)\Delta z,\end{displaymath} (12)
and  
 \begin{displaymath}
\frac{1}{4}\frac{\partial }{\partial z}\ln\left( \frac{\omeg...
 ...frac{\partial v}{\partial z}\frac{\omega^2}{\omega^2-(k_xv)^2}.\end{displaymath} (13)
From equation (8) to equation (13), we have
\begin{displaymath}
\sqrt{\frac{k_z(z+\Delta z)}{k_z(z)}}\approx 
 e^{-\frac{1}{...
 ...tial v}{\partial z}\frac{\omega^2}{\omega^2-(k_xv)^2}}\Delta z.\end{displaymath} (14)
So equation (7) can be rewritten as
   \begin{eqnarray}
P(z+\Delta z)&=&\sqrt{\frac{k_z(z+\Delta z)}{k_z(z)}}e^{ik_z\De...
 ...ial v}{\partial z}\frac{\omega^2}{\omega^2-(k_xv)^2}\Delta z}P(z).\end{eqnarray} (15)
(16)
Comparing the amplitude preserving one-way wave equation (equation (4)) with first order approximation of WKBJ (equation (16)), we find they are same. So we demonstrate theoretically that the amplitude preserving one-way wave equation is equivalent to the first order approximation of WKBJ.
next up previous print clean
Next: Conclusion Up: Shan and Biondi: Residual Previous: Amplitude preserving one-way wave
Stanford Exploration Project
10/14/2003