next up previous print clean
Next: Evaluation of and Up: REFERENCES Previous: REFERENCES

Evaluation of ${\partial k_{x_h}'}/{\partial \phi}$and ${\partial k_{y_h}'}/{\partial \phi}$

Differentiating equation (14) and after some algebraic manipulation, we obtain the following:
   \begin{eqnarray}
\frac{\partial k_{x_h}'}{\partial \phi} =
&=&
-k_z\tan\gamma
\f...
 ...\tan\gamma
\sin \alpha'_y
\frac{\partial k_{y_m}'}{\partial \phi}.\end{eqnarray}
(15)
Differentiating equation (13) we can write the following:  
 \begin{displaymath}
\frac{\partial k_{y_h}'}{\partial \phi} 
=
k_z\tan\gamma
\le...
 ...{\partial \sin \alpha'_y}{\partial \phi}
\tan\alpha'_x
\right].\end{displaymath} (16)
To evaluate equation (16) we need $\partial \tan\alpha'_x/\partial \phi$and $\partial \sin \alpha'_y/\partial \phi$;that is,  
 \begin{displaymath}
\frac{\partial \tan \alpha'_x}{\partial \phi} =
\frac{\parti...
 ... \phi} =
\frac{1}{k_z}
\frac{\partial k_{x_m}'}{\partial \phi},\end{displaymath} (17)
and  
 \begin{displaymath}
\frac{\partial \sin \alpha'_y}{\partial \phi} =
\frac{\parti...
 ...}{k_z}\cos^3 \alpha'_y
\frac{\partial k_{y_m}'}{\partial \phi}.\end{displaymath} (18)
Substituting equation (17) and equation (18) into equation (16), we finally obtain:
   \begin{eqnarray}
\frac{\partial k_{y_h}'}{\partial \phi}
&=&
k_z\tan\gamma
\left...
 ...'_y
\frac{\partial k_{y_m}'}{\partial \phi}
\right].
\nonumber
\\ \end{eqnarray}

next up previous print clean
Next: Evaluation of and Up: REFERENCES Previous: REFERENCES
Stanford Exploration Project
10/14/2003