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Short Note

Conjugate gradient total least-squares in geophysical optimiza-
tion problems

Morgan Brown1

INTRODUCTION

Total least-squares (TLS) optimization is a methodology to solve least-squares optimization
problems when the modeling operator has errors. In standard least-squares optimization, errors
are assumed to be concentrated in the data only.

Golub and Loan (1980) presented a numerically-stable TLS algorithm which utilizes the
singular value decomposition (SVD). Subsequent refinements to the method predominantly
use SVD, and much of the current literature emphasizes stabilization of the inverse and im-
plicit model regularization by SVD truncation (Fierro et al., 1997). Because it is numeri-
cally intensive, however, the SVD generally proves unrealistic for use in large-scale problems,
which are the rule in exploration geophysics.

The TLS problem can be cast as an extremal eigenvalue/eigenvector estimation problem.
Chen et al. (1986) present a conjugate gradient (CG) scheme to compute the minimum eigen-
value/eigenvector of a linear system. Zhu et al. (1997) extend Chen et al.’s algorithm to solve
the TLS problem, in the context of optical tomography.

I begin with a short theoretical overview of the TLS problem. I implement the CG method
described by Chen et al. (1986), adapted for the TLS problem in a similar fashion as the
work of Zhu et al. (1997). I test the algorithm on two familiar geophysical problems: least-
squares deconvolution of a 1-D signal, and velocity scan inversion with the hyperbolic Radon
transform. Liu and Sacchi (2002) tested an SVD-based, regularized TLS approach on velocity
scan inversion using the parabolic Radon transform.

TLS OVERVIEW

Golub and Loan (1980) phrased the TLS problem as follows. Given a forward modeling op-
eratorL and measured datad, assume that both are contaminated with white noise of uniform
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variance; matrixN and vectorn, respectively. Then the TLS solution is obtained by minimiz-
ing the Frobenius matrix norm of the augmented noise matrix:

min‖[N n]‖F, (1)

subject to the constraint that the solution is in the nullspace of the combined augmented noise
and input operators:

([L d ] + [N n])

[
m

−1

]
= 0. (2)

To solve the system of equations (1) and (2), Golub and Loan (1980) introduced a technique
based on the Singular Value Decomposition (SVD). Although mathematically elegant, SVD-
based approaches are generally unrealistic for the large-scale problems that are the norm in
exploration geophysics.

Equivalence with Rayleigh Quotient Minimization

Golub (1973) showed that the constrained minimization problem of equations (1) and (2)
is equivalent to minimization of the so-called Rayleigh Quotient. If we define the vector
q = [m −1]T andA = [L d ], the Rayleigh Quotient takes the following form:

min F(q) =

∣∣∣∣qATAq
qTq

∣∣∣∣
2
. (3)

After the minimization of equation (3), the resultant vectorq is the eigenvector associated with
the smallest eigenvalue ofATA.

Conjugate Gradient Method for TLS

The Rayleigh Quotient can be minimized by iterative techniques. Zhu et al. (1997) introduced
a method based on conjugate gradients (CG) to solve the TLS problem which was adapted
from the earlier work of Chen et al. (1986). I implemented this CG-based algorithm and
present pseudocode in Appendix A.

Theory guarantees that the CG method converges inn steps, wheren is the size of the
model vector. However, in practical situations with real seismic data, a “useful” model may
appear after relatively few (<< n) CG iterations. How useful the model and how few the iter-
ations depends on the problem. Nonetheless, in practice, the computational cost and memory
requirements are nearly always much less with CG than with SVD.

Relation of TLS to Damped Least-squares (DLS)

The TLS solution is closely related to the classic damped least squares (DLS) solution, where
the damping factor,σ 2, is the smallest nonzero singular value of the augmented matrix [L d ]:

mDLS =
(
L TL +σ 2I

)−1
L Td. (4)
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The TLS solution can be rewritten (Golub and Loan, 1980; Björck, 1996) as follows.

mT LS =
(
L TL −σ 2I

)−1
L Td. (5)

The only difference between equations (4) and (5) is the negative sign on the damping term.
Thus the TLS problem is considered a “deregularization” of the standard LS problem, and
is guaranteed to be worse conditioned, sinceL TL is positive-semidefinite at worst (Björck,
1996).

LEAST-SQUARES DECONVOLUTION TESTS

I constructed a simple, yet relevant synthetic test case for the TLS algorithm: deconvolution.
The known model is a sequence of spikes of random amplitude and placement. To create data,
the known model was convolved with a Ricker wavelet. Gaussian-distributed noise with a
variance of 1 was added to the data, and also to the filter used in the deconvolution.

Figures 1-3 compare the standard least-squares (LS), the TLS, and DLS solutions to the
problem. The LS solution is undoubtedly poor. In the “quiet” zones of the model, where the
known model is zero-valued, the estimated LS model has almost as much energy as where the
spikes are. Still, the modeled data appears to fit the input data quite well.

The TLS and DLS solutions appear somewhat similar. Both approaches seem to suppress
unwanted noise in the estimated model in the quiet regions. However, the TLS model seems to
have better resolution of the true spikes. Also, the TLS method’s residual error appears better
balanced than the DLS’s. Both TLS and DLS have higher residual error energy than the LS
solution.

HYPERBOLIC RADON TRANSFORM TESTS

I tested the proposed TLS algorithm on a popular SEP inversion application, the Hyperbolic
Radon Transform (HRT) (Nichols, 1994; Lumley et al., 1995; Guitton, 2000b). Figures 4
and 5 compare the results of the TLS, LS, and DLS methods, for 10 and 150 CG iterations,
respectively.

The results of the HRT tests are inconclusive. After 10 iterations, the results from the
three methods are almost indistinguishable. After 50, the DLS model looks “best,” i.e., most
interpretable by a human for picking velocities. However, the TLS residual error is the whitest,
the best balanced, and contains no correlated energy–the very criteria which Guitton (2000a)
uses to define optimality.

CONCLUSIONS AND DISCUSSION

I have introduced total least-squares (TLS) optimization as a possible alternative to “standard”
least-squares approaches. TLS approaches incorporate errors in both the data and in the mod-
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Figure 1: Top to bottom: 1) Known filter plus noise, 2) Known model, 3) Estimated standard
least-squares model overlaying known model, 4) Noisy data, 5) Modeled data, 6) Residual
error. morgan2-decon.ls.noisy[ER]

eling operator, to produce “more accurate” solutions. I put “more accurate” in quotes because
in our real world, frequent appearences of nonempty nullspaces impose some subjectivity on
any solution.

I implemented the conjugate gradient TLS solver (TLS-CG) published by Zhu et al. (1997),
although in that paper, the authors omit a crucial model normalization step that leads to non-
convergence of the algorithm. I present a complete algorithm in Appendix A.

Tests on a synthetic 1-D deconvolution example seem to validate TLS as a tool. In those
tests, when ideal noise was added to the filter and data, TLS resolved the true model better than
normal least-squares or damped least-squares. Tests using the hyperbolic radon transform
were inconclusive; no efforts were made to understand operator error in this case, and in
summary, the TLS result looks somewhere in between LS and DLS.

Will TLS be a useful tool in geophysics? My suspicion is that TLS makes only a second
order improvement in the quest to account for uncertainty in geophysical inverse problems.
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Figure 2: Top to bottom: 1) Known filter plus noise, 2) Known model, 3) Estimated total least-
squares model overlaying known model, 4) Noisy data, 5) Modeled data, 6) Residual error.
morgan2-decon.tls.noisy[ER]

More interesting are efforts to perturb the nullspace of inverse problems to infer model statis-
tics (Clapp, 2002; Chen and Clapp, 2002).

Discussion: Error Distribution

Recall that in the earlier TLS formulation, the noise which contaminatesboth the operator
and data is assumed to be white, with uniform variance. In practice, both the operator and
data noise are likely to be correlated, with nonuniform variance. Björck (1996) notes that
an appropriate change of variables can restore the validity of the assumptions. He defines a
square matrixD which is applied, somewhat surprisingly, to the “data matrix” of equation (2).

(D[L d ] + [N n])

[
m

−1

]
= 0. (6)
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Figure 3: Top to bottom: 1) Known filter plus noise, 2) Known model, 3) Estimated damped
least-squares model overlaying known model, 4) Noisy data, 5) Modeled data, 6) Residual
error. morgan2-decon.dls.noisy[ER]

While it may seem intuitive to scale the noise, rather than the data, if the operator is diagonal
(as it is in the fairytale world of uncorrelated noise), the inverse is trivial. Even if the noise is
correlated, at SEP, we have considerable experience with the design of invertible decorrelation
and balancing operators.

Are the restrictions (white, balanced) on the noise crippling? Zhu et al. (1997) claim that
in scattering tomography experiments, correlated noise does not unduly harm the TLS result,
and also that the TLS result in this case is still better than the normal LS result.
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Figure 4: Left panel: Input data. Right-top: Envelope of estimated slowness model for LS,
TLS, and DLS methods after 10 iterations. Right-bottom: Residual error for LS, TLS, and
DLS solutions. morgan2-hrtcomp.10[ER]
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APPENDIX A: CONJUGATE GRADIENT MINIMIZATION OF THE RAYLEIGH
QUOTIENT

Recall thatq = [m − 1]T , wherem is the “usual” model (i.e.,Lm=d). qi is the estimated
model vector at iterationi .

q0 =
q0√
qT

0 q0

⇐ Model (A-1)

λ0 = qT
0 ATAq0 ⇐ Estimated smallest eigenvalue (A-2)

r0 = λ0q0 −ATAq0 ⇐ Residual (A-3)

s0 = r0 ⇐ Solution Step (A-4)

iterate { (k = 0,ni ter ) (A-5)

Pa,k = qT
k ATAsk (A-6)

Pb,k = sT
k ATAsk (A-7)

Pc,k = sT
k qk (A-8)

Pd,k = sT
k sk (A-9)

b = Pb,k −λk Pd,k (A-10)

c = Pa,k −λk Pc,k (A-11)

d = Pb,k Pc,k − Pa,k Pd,k (A-12)

αk =
−b+

√
b2 −4dc

2d
(A-13)

qk+1 = qk +αksk (A-14)

qk+1 =
qk+1√

qT
k+1qk+1

(A-15)

λk+1 = qT
k+1ATAqk+1 (A-16)

r k+1 = λk+1qk+1 −ATAqk+1 (A-17)

βk = −
skATAr k+1

skATAsk
(A-18)

sk+1 = r k+1 +βksk (A-19)

} (A-20)

qni ter = qni ter /
(
−qni ter [m+1]

)
(A-21)
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