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Combined inversion: preconditioning with regularization

Marie L. Clapp1

ABSTRACT

Iterative inversion schemes are becoming more common in seismic processing. The high
cost of the operators generally used in these inversion schemes makes it very important to
minimize the number of iterations needed to obtain a good model. In complex environ-
ments, inversion schemes can be improved by styling the model through regularization or
preconditioning. At early iterations, regularization provides a result that has a frequency
content comparable to that of the “ideal” model. Preconditioning defines a solution at
every model point at earlier iterations than regularization. An “improved” model should
combine these two characteristics. This paper examines a scheme that uses the result of
preconditioned inversion as an initial model for regularized inversion. I show that this
scheme allows us to obtain an improved model in fewer iterations than would be needed
for preconditioned inversion or regularized inversion alone.

INTRODUCTION

As the search for oil concentrates on ever more complicated areas of the subsurface, we find
ourselves needing to balance the benefits of obtaining a better image with the cost of obtaining
that better image. To obtain an ideal image, we would have to use an imaging operator that is
the inverse of the physical operator propagating our seismic signal into the ground. However,
imaging operators such as migration are adjoints rather than inverses (Claerbout, 1995), so in
complex areas the resulting image may not be as good as it could be. Unfortunately, finding an
operator that is an inverse in complex areas is almost impossible, so we generally approximate
the inverse through a process like least-squares inversion (Nemeth et al., 1999; Duquet and
Marfurt, 1999; Ronen and Liner, 2000). When using such an iterative technique, the result of
iterating to convergence can be thought of as the “ideal” model.

Iterative inversion schemes often have trouble with problems that are unstable or where
the mapping operator has a null space (Claerbout, 1991). These issues can be overcome by
regularizing the problem (Tikhonov and Arsenin, 1977; Harlan, 1986; Fomel, 1997). However,
our regularization operators, which are usually roughening operators, tend to be small. Their
influence at any single iteration is limited in range. When our mapping operator has large areas
that do not correspond to any data locations this can be especially troublesome. A solution
to this problem is to perform a change of variables, turning it into a preconditioned problem

1email: marie @ sep.Stanford.edu
The author has recently changed her name from Marie Prucha to Marie Clapp.

151



152 M. Clapp SEP–112

(Fomel et al., 1997). Using the helix transform (Claerbout, 1998), we can apply the inverse
of our small regularization operator, which will be a smoothing operator, whose influence
extends a large distance. The advantage of this approach is that we quickly define our solution
at all model points. The disadvantage of this approach is that our preconditioning operator
dominates early iterations, creating a model that is often too low in frequency. What we
ideally would like is a process where the solution is defined everywhere without the reduction
in frequency content.

In Prucha and Biondi (2002), we presented a scheme that met these requirements by using
the result of the preconditioned inversion as an initial model for a regularized inversion. From
that example, and for the purposes of this paper, I will define an “improved” model as one that
has a solution defined at every point and has a frequency content comparable to that of the
“ideal” model. The combined inversion using preconditioning and regularization allows me to
obtain an improved model with fewer iterations than would be needed using preconditioning
or regularization alone. In this paper, I will take a closer look at the process of combined
inversion.

In order to efficiently examine combined inversion with preconditioning and regularization
(CIPR), this paper solves an interpolation problem which is much simpler than the imaging
problem in Prucha and Biondi (2002). I will begin by explaining the constructed problem and
the operator that is used for interpolation. Then I will present and discuss the results. Finally,
I will explain my future plans for this combined inversion scheme.

CONSTRUCTING AN INTERPOLATION PROBLEM

The operators

In order to examine the results of preconditioned inversion, regularized inversion, and my
proposed CIPR, I needed a problem that was easier to understand than that shown in Prucha
and Biondi (2002). I am concerned with two issues: frequency content and solutions at every
model point. To address the first issue, I chose to make my inversion operator a “smoother”
that causes the model to have a higher frequency content than the data. This can be expressed
as:

d ≈ Sm (1)

whered is the data,m is the model, andS is a smoothing operator that maps the average of 5
vertical points in the model to one point in the data. Since the model should be high frequency,
the effects of the preconditioned inversion should be quite obvious.

Given such a simple inversion operator, creating a need for regularization or precondition-
ing requires that I cause the model created by inversion (fitting goal (1)) to have points that
do not have solutions defined by the inversion operator. I chose to do this by introducing a
masking operatorW. The combined operatorWS will now have a null space whereW = 0.
This changes my fitting goal to:

d ≈ WSm. (2)
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To interpolate the model in the areas affected by the null space, I add a second fitting goal
to fitting goal (2):

d ≈ WSm (3)

0 ≈ εAm

where the new operator,A, is a regularization operator. I have chosen to makeA a steering
filter (Clapp et al., 1997; Clapp, 2001) generated as described in Prucha et al. (2000, 2001).
Briefly, a steering filter consists of dip penalty filters at every model point, meaning that it
is a non-stationary roughening operator that acts over short distances. To precondition this
problem, I perform a change of variables to replace the modelm with the preconditioned
variablep:

m = A−1p. (4)

Applying this to fitting goals (3) results in a new set of fitting goals:

d ≈ WSA−1p (5)

0 ≈ εp.

The inverse of the steering filter (A−1) is applied using the helix transform. The inverse oper-
ator will be a smoothing operator that will act over a much larger distance thanA.

The data

Given the operators I have chosen to use in this experiment, selecting data to test is straight-
forward. I need data that will result in a model that requires interpolation and will make
differences in frequency content of various results obvious. Since the regularization operator
is a steering operator, the data can have varying dips. To meet these simple requirements, I
chose to take a 2-D slice from the familiar “qdome” model (Claerbout, 1995). The masking
operatorW contains enough zeros to defeat the inversion operator, making the regularization
operator necessary. Figure 1 shows the data multiplied by the masking operator (Wd) I used
for this experiment. I am displaying it this way to make comparison with the inversion results
simpler. Figure 1 also shows the “ideal” model that would be obtained ifW was simply an
identity operator.

RESULTS

The first experiments I ran were to simply test the result of the regularized inversion (fitting
goals (3)) and the preconditioned inversion (fitting goals (5)). I am concerned with the behav-
ior in early iterations, so I just ran 6 iterations of each. These results are in Figure 2.

The regularized result is high frequency, but it has barely begun to fill in the areas affected
by the null space. This is exactly the behavior we expect at early iterations in a regularized
inversion. The preconditioned result has completely filled in the areas affected by the null
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Figure 1: Left panel is the data weighted by the masking operator used for the inversion
problems, right panel is the ideal model we get when the masking operator is replaced with an
identity operator.marie1-datmod[ER,M]

Figure 2: Left panel is the result of 6 iterations of just regularized inversion, right panel is the
result of just 6 iterations of preconditioned inversion.marie1-regprec[ER,M]
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space, meaning that it has defined solutions at every point (although not the ideal solution),
but it is very low frequency. Once again, this is expected and has been seen in earlier works
with imaging operators (Prucha et al., 2000; Prucha and Biondi, 2000, 2002).

The previous example helps to demonstrate two important points made by Claerbout
(1999). First, both regularized inversion and preconditioned inversion take a great many it-
erations to converge. While this is not a problem for a toy problem like the one presented
in this paper, it is impossible for a real geophysical problem like imaging in complex areas.
The operators used in such a problem are infinitely more complex than those used in this
simple interpolation problem, so it is vital that we minimize the number of iterations needed
(Biondi and Vlad, 2001). Secondly, when we limit ourselves to a small number of iterations,
we encounter several problems with both regularization and preconditioning. These problems
include:

• A regularized inversion using a small roughening operator will not fill the null space.

• The result of a preconditioned inversion will not contain high frequencies.

Clearly, in order to obtain a high frequency result with defined solutions at every point in a
small number of iterations, we need some combination of the regularized and preconditioned
inversions. I chose to run a small number of preconditioned iterations then use that result
as an initial model for a small number of regularized iterations. I chose to test two different
combinations, one with 3 iterations of preconditioned inversion and 3 iterations of regularized
inversion and one with 5 iterations of preconditioned inversion and 1 iteration of regularized
inversion. These results are in Figure 3.

Both of the CIPR results contain higher frequencies than the purely preconditioned re-
sult (right panel Figure 2) and fill the areas affected by the null space better than the purely
regularized result (left panel Figure 2). Determining which CIPR result is “better” is fairly
subjective, but I chose to compare them by looking at their frequency spectrums. This can be
seen in Figure 4. The frequencies shown in this figure are the average over all of the traces.

Figure 4 shows the frequency spectra of the results in Figure 2 and Figure 3 along with the
frequency spectrum of the “ideal” model in Figure 1. As expected, the frequency content of
the regularized inversion is close to that of the ideal model and the frequency content of the
preconditioned inversion is much lower than the ideal model. It is more interesting to compare
the frequency contents of the two different CIPR results. This shows us that the inversion using
3 iterations of preconditioning with 3 iterations of regularization has a frequency content closer
to the ideal model than that of the inversion using 5 preconditioned iterations and 1 regularized
iteration. This is particularly interesting because it indicates that both preconditioning and
regularization are important to get the most improvement.

In this paper, I will consider the CIPR result using 3 iterations of preconditioned inversion
and 3 iterations of regularized inversion to be my “best” result. Given this result, I felt it would
be instructional to see how many iterations of just preconditioned inversion (fitting goals (5))
it would take to get an equivalent frequency content. It took 30 iterations of preconditioned
inversion to get the same frequency content as the “best” result. The frequency content of the
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Figure 3: Left panel is the result of 3 iterations of preconditioned inversion followed by 3
iterations of regularized inversion, right panel is the result of 5 iterations of preconditioned
inversion followed by only 1 iteration of regularized inversion.marie1-precreg[ER,M]

Figure 4: Comparison of the fre-
quency content of the resulting mod-
els seen in Figures 2 and 3 along
with the frequency content of the cor-
rect model (right panel of Figure 1).
marie1-spectrum[ER]
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result can be seen in Figure 5. One again, the frequencies shown here are the average over all
of the traces.

Figure 5: Comparison of the fre-
quency content of the results of
3 iterations of preconditioned in-
version with 3 iterations of reg-
ularized inversion and 30 itera-
tions of just preconditioned inversion.
marie1-speccomp[ER]

Figure 6 displays the models resulting from the “best” solution and the solution using 30
iterations of preconditioned inversion. The model resulting from 30 iterations has done a better
job of filling the areas affected by the null space, as we would expect for an inversion process
that used 5 times as many iterations. I have also included a model that has filled the areas
affected by the null space equally well as that used only regularized inversion (fitting goals
(3)). This result took 50 iterations.

CONCLUSIONS

The simple experiment conducted in this paper has compared two familiar inversion schemes,
preconditioned and regularized, with a new combined inversion scheme that uses the result of
a small number of preconditioned iterations as an initial model for a small number of regular-
ized iterations (CIPR). I used a simple interpolation problem to test CIPR’s ability to reduce
the number of iterations needed to get an “improved” model. This “improved” model has a
solution defined at every point and has a frequency content close to that of an “ideal” model. I
have shown that to obtain an “improved” model, CIPR takes far fewer iterations than either of
the other schemes. This makes CIPR an interesting option for many types of seismic inversion
problems.

FUTURE PLANS

The simple problem presented in this paper will allow me to more thoroughly understand
CIPR. One issue I plan to examine is its effect on amplitudes. An extension of this issue is
the possibility of using the model normalization described by Rickett (2001a,b) to normalize
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Figure 6: Comparison of the models resulting from 3 iterations of preconditioned inversion
with 3 iterations of regularized inversion (left panel), 30 iterations of preconditioned inver-
sion (center panel), and 50 iterations of regularized inversion (right panel).marie1-compits
[ER,M]

the result of the preconditioned iterations before it is sent to the regularized inversion as an
initial model. Another issue is the possibility of applying a mask that will only allow the
preconditioning and regularization to occur within a specified area. Also, I plan to find some
way to determine the optimal ratio of preconditioned iterations to regularized iterations. This
may be related to another concern I intend to scrutinize, which is the effect of CIPR on the
final residuals.

REFERENCES

Biondi, B., and Vlad, I., 2001, Amplitude preserving prestack imaging of irregularly sampled
3-D data: SEP–110, 1–18.

Claerbout, J. F., 1991, Design of inverse Kirchhoff-style filters by LSCG: SEP–72, 33–38.

Claerbout, J. F., 1995, Basic Earth Imaging: Stanford Exploration Project,
http://sepwww.stanford.edu/sep/prof/ .

Claerbout, J., 1998, Multidimensional recursive filters via a helix: Geophysics,63, no. 5,
1532–1541.



SEP–112 CIPR 159

Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image
enhancement: Stanford Exploration Project,http://sepwww.stanford.edu/sep/prof/ .

Clapp, R. G., Fomel, S., and Claerbout, J., 1997, Solution steering with space-variant filters:
SEP–95, 27–42.

Clapp, R. G., 2001, Geologically constrained migration velocity analysis: Ph.D. thesis, Stan-
ford University.

Duquet, B., and Marfurt, K. J., 1999, Filtering coherent noise during prestack depth migration:
Geophysics,64, no. 4, 1054–1066.

Fomel, S., Clapp, R., and Claerbout, J., 1997, Missing data interpolation by recursive filter
preconditioning: SEP–95, 15–25.

Fomel, S., 1997, On model-space and data-space regularization: A tutorial: SEP–94, 141–164.

Harlan, W. S., 1986, Signal-noise separation and seismic inversion: SEP–47.

Nemeth, T., Wu, C., and Schuster, G. T., 1999, Least-squares migration of incomplete reflec-
tion data: Geophysics,64, no. 1, 208–221.

Prucha, M., and Biondi, B., 2000, Amplitudes and inversion in the reflection angle domain:
SEP–105, 203–208.

Prucha, M. L., and Biondi, B. L., 2002, Subsalt event regularization with steering filters: SEP–
111, 1–17.

Prucha, M. L., Clapp, R. G., and Biondi, B., 2000, Seismic image regularization in the reflec-
tion angle domain: SEP–103, 109–119.

Prucha, M. L., Clapp, R. G., and Biondi, B. L., 2001, Imaging under salt edges: A regularized
least-squares inversion scheme: SEP–108, 91–104.

Rickett, J., 2001a, Model-space vs data-space normalization for finite-frequency depth migra-
tion: SEP–108, 81–90.

Rickett, J., 2001b, Spectral factorization of wavefields and wave operators: Ph.D. thesis, Stan-
ford University.

Ronen, S., and Liner, C. L., 2000, Least-squares DMO and migration: Geophysics,65, no. 5,
1364–1371.

Tikhonov, A. N., and Arsenin, V. Y., 1977, Solution of ill-posed problems: John Wiley and
Sons.



160


