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Nonlinear pairwise alignment of seismic traces

Christopher L. Liner and Robert G. Clapp

ABSTRACT

Alignment of seismic traces is a recurring need in seismic processing and interpretation.
For global alignment via static shift there are robust tools available, including cross| cor-
relation. However, another kind of alignment problem arises in applications as diverse
as associating synthetic seismograms to field data, harmonizing P-wave and mode con-
verted data, final multilevel flattening of common image gathers, and so on. These|cases
require combinations of trace compression, extension, and shift - all of which are|time
variant. The difficulty is to find a mapping between the traces which is in some sense
optimum. This problem is solved here using a modified form of the Needleman-Wunsch
algorithm, which was originally developed for amino acid sequence alignment in protgins.
Applied to seismic traces, this global optimization algorithm provides a nonlinear map-
ping of one seismic trace onto another. The method extends to alignment of any number
of traces since that problem can be broken down into a cascade of pairwise alignments.
The Needleman-Wunch algorithm is discussed, extended to the seismic case, and applied
to field data. The results show a promising new tool for nonlinear alignment or flattening
of seismic data.

INTRODUCTION

This paper is concerned with the process of aligning two seismic traces and, by repeated
application, any number of seismic traces. At first appearance this is a trivial problem. One
need only compute the cross correlation of the two traces and, from the peak of this function,
the optimum alignment is known.

But this is merely the best alignment via static shift. In a complex data set, such as a CMP
gather, the human eye can associate events that a global correlation alignment will not honor.
What the eye is able to do is a time-variant, nonlinear association of events. To carry out this
alignment process requires the determination and application of a nonlinear mapping between
the trace samples — a combination of compression, stretching, and translation, all varying with
time.

If it were possible to do this kind of alignment, what would be the use of it? In a sense, it
is already done everyday in seismic processing. A collection of traces are analyzed for a set
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of coefficients which drive a nonlinear stretch to make all events flat at all times. This process
is, of course, normal moveout. But NMO is a model-driven process, with the model being
the NMO equation. A general nonlinear trace alignment algorithm would make it possible
to flatten all events in a CMP gather with no knowledge of the NMO equation. We are not
advocating such a procedure, but making a point. There is value in using the NMO equation
to flatten events, including the fact that it leaves multiples non-flat and therefore removable (at
least partially). However, a the general alignment algorithm may be useful as a final flattening
procedure for any type of gather (CMP, CIG, CAG, etc.). It could also have application in
alignment of synthetic seismograms with field data, associating events on P-P and P-Sv data
cubes, etc. In short it would be a useful, general utility.

While the literature on trace interpolation and estimation of missing data is vast, there is
very little published work on nonlinear trace alignment. To our knowledge the only published
work directly on point with the current study is Martinson et al. (1982) and a derivative paper
Martinson and Hopper (1992). In the second work, an iterative, linear inverse approach is used
to determine a set of coefficients describing a mapping function which relates features on one
trace with those on another. The process is driven by maximizing the correlation or coherence
between the modified traces, and used as a trace interpolation technique. This method is
similar in spirit to our approach, but owing to the use of linear inverse theory it tends to be
expensive, sensitive to the starting model, and does not guarantee a global solution.

Our solution to the pairwise trace alignment problem borrows a concept and algorithm
from computational biology and modifies it to the seismic case. The concept is pairwise align-
ment of amino acid sequences, and the algorithm is due to Needleman and Wunsch (1970).

METHODOLOGY

Needleman-Wunsch algorithm

The Needleman-Wunch (NW) algorithm (Needleman and Wunsch, 1970) is a nonlinear global
optimization method that was developed for amino acid sequence alignment in proteins. This
was the first of many important alignment techniques which now find application in the Human
Genome Project.

Human DNA consists of some 30,000 genes which are in turn composed of 20 amino
acids represented by letters of a reduced alphabet (ADCEFGHILKMNPQRSTVWY). The
total genome is composed of about 3 billion chemical base pairs, or about 100,000 per gene.
Finding where a particular string of amino acids fits is an optimization problem that aims
to find the optimal alignment of the two strings with respect to a defined set of rules and
parameter values for comparing different alignments.

The algorithm is an iterative method in which all possible pairs of amino acids (one from
each string) are set up in a 2D matrix and alignments are represented as pathways through
this array. The optimum alignment is the path (or paths) connecting maximum scoring values.
This approach is an example of dynamic programming, which has also been applied to seismic
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modeling (Darby and Neidell, 1966) and travel time computation (Schneider et al., 1992).

It is a global optimization process which yields a solution to the problem of pairwise
alignment, meaning that we are interested in finding the best fit between only two strings.
If alignment of more than two strings is of interest, the problem can be broken down into a
cascade of pairwise alignments and thus solved.

In its simplest form, the Needleman-Wunsch algorithm can be summarized by Figure 1. A
matrix is formed by placing the two strings, possibly of different length, along the left column
and top row. In this step a one is allocated to a cell in the matrix if the letter in each list at this
location is the same. Otherwise no entry is made (which is a defacto zero). It is at this stage
that the letter-alignment problem becomes purely numerical. In fact, the original string could
just as easily consist of integers as letters. The result of this process is the similarity matrix in
Figure 1a.

From the similarity matrix a scoring matrix is formed beginning in the lower right corner.
The procedure is to add the score value to the maximum value in a row-column pair whose
upper left corner is down and to the right of the current working position. Thus in Figure 1b
the similarity value 1 is added to the maximum value in the blackened cells (also 1) to give a
score of 2. Figure 1cis a later stage of the computation, which continues up and to the left until
every cell has been visited and the scoring matrix is complete, Figure 1d. In this simple form,
a final score corresponds to how many character matches exist in the optimum alignment.

The final step (traceback) operates by starting at the highest score value (8 in this case)
and determining the maximum score path by moving to the right, down, or diagonally down
and to the right, Figure 1e. The fact that more than one 8 score alignment exists (Figure 1f) is
an expression of non-uniqueness. An important aspect of the solution is that in the process of
finding the best global alignment, we also find the best alignments of any sublength.

Details of the algorithm

We now introduce a more flexible form to the Needleman-Wunsch algorithm (Karp, 2000).
Let the two input strings X, y), given by

X = (X1,X2y eee Xy «or s Xm) (1)

y = (yl’yZ’ v Yj e ’yn) (2)

where (n,n) need not be equal. The subscriptienotes the row direction, anddenotes
columns. We write the scoring function(i, j) as the equation set

V(i,j) = max[G(i,j),F(,j) EG,j)] 3)
G@i,j) = o,y)+V(i+1,j+1) (4)
FG.i)) = —(p+a)+max[V(+1,j),F@i+1,j)+p] (5)
EG,j) = —(p+a)+max[V(i,j+1),E(G,j+1)+ p] (6)
V(i,n+1) = —(p+(m-i+1)Qq) (7)

Vim+1,j) = —(p+(—-j+1)a) , (8)
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Figure 1: The Needleman-Wunsch algorithm yields the globally optimum alignment between
two strings, one along the left of the matrix and the other across the top. (a) Similarity ma-
trix. (b) and (c) partially complete score matrix. (d) Complete score matrix. (e) Traceback
route giving globally optimum alignment. (f) Alternate alignment illustrating non-uniqueness.
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where the indices range< mandj < n. In this form, the functiorr (x;, y;) is the similarity

matrix and it is calculated on the fly rather than precomputed. Further it can be customized to
reflect different weights associated with matches and mismatches. In biological applications
an element on each string either matches or does not, and this fact is represented in the choice
of a similarity measure, for example

o(a,a)=+1
o(xi,yj))=4 o(—.a)=0 9)
o(a,—)=0

in which a value of 1 is awarded for a match, and all other cases are are equally awarded 0.

In the seismic case we do not expect or need an exact amplitude match, rather it is impor-
tant to reward small amplitude differences and penalize large ones. We capture this idea in a
similarity function as

o (Xi,y;) = c—abdti(xi) — t2(y;)], (10)

wherec is a constant chosen to keefx;, y;) > 0 andabd] is the absolute value.

Computational complexity and cost of this algorithm applied to two strings of langtiu
mis O(nxm).

Modification to the seismic case

On first consideration, the NW algorithm seems ill-suited to the seismic case, primarily be-
cause seismic amplitude data is continuous, not discrete. To utilize the machinery of the NW
algorithm we consider the histogram of data amplitudes on the trace pair and form a set of
bins. That is to say, all of the floating point amplitudes are partitioned into a small number of
intervals (20 in the examples given below), and the similarity matrix is formed by the equation
10 operating on the binned amplitudes. An important aspect of the algorithm is that a global
optimum alignment function is found independent of the similarity measure that is used. To
test feasibility, we used a one point similarity that captures amplitude differences. However
we could easily have worked with a twopoint measure to emphasize slope similarity, or three
points to match curvature. Extending this idea, one could work with short window cross corre-
lations to fill the similarity matrix similar (Martinson and Hopper, 1992). Clearly, any of these
more ambitious similarity measures would increase the cost of the algorithm. In any case, the
NW algorithm guarantees a global optimum alignment solution using any similarity matrix as
input.

As a final comment, we note that any number of traces that require alignment can be
processed as a cascaded series of pairwise problems. Thus there is no loss of generality in
discussing just the pairwise problem.
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EXAMPLES

To test the methodology we started with a simple synthetic Normal Moveout (NMO) gather
with some random noise (Figure 2). We selected two traces some distance apart (the first and
tenth trace) and applied the algorithm. The two traces can be seen in the left part of Figure 3.
Note the time-variant alignment error.

Offset(km)
0 0.4 0.8 1.2 1.6

Figure 2: A synthetic shot gather.
The first and tenth trace were
selected to test the algorithm.
bob2-nmo.gathe{ER]

Figure 4 shows the similarity (left) and score (right) matrices. The black lines in the
similarity matrix represent low scores and correspond to the events in the data, they only
disappear (or match) when encountering another wavelet. The score matrix shows exactly
what we expect to see. A slightly non-diagonal maximum (except for edge effects at low times
corresponding to a lack of coherent events). Figure 3 shows the input (left) and output (right)
along with their corresponding differences. The output is much better aligned and the overall
differences reduced. The difference trace is a proxy for guaging the quality of alignment, but
the goal is not to drive this difference to zero. The algorithm keys on strong events whose
alignment may result in sizable differences at other levels. This is a significant departure from
Martinson and Hopper (1992) who minimize a difference measure to determine alignment.

Figure 3: The left plot shows the %

two input traces and the right plot the
traces after alignment. The third trace ]
in each display shows the difference. - ) %

|bob2-nmo.in-out[ER] ) )

For a second test we chose a common reflection point (CRP) gather from a 2-D marine
dataset (Figure 5). The gather is an angle gather (Prucha et al., 1999; Sava and Fomel, 2000)
after phase-shift plus-interpolation (PSPI) migration (Gazdag and Sguazzero, 1985). Note that




SEP-112 Alignment 177

trace 2

T
l['_'-:]l"ll""li_

B E
LI

ERRE

1
10T

Similarity matrix Score matrix

Figure 4: The right plot is the score matrix using first two traces from Figure 2 and the
left panel is the similarity matrix. Axes labels refer to time sample numbers (not seconds).
| bob2-nmo.score-siliER]

we still see some residual moveout in the angle gather. The left panel of Figure 7 shows the
input two traces (third and sixteenth).

After running the algorithm we obtained the score and similarity matrices seen in Figure 6.
Note how the structure of the similarity matrix to the previous example (Figure 4). The score
matrix and the corresponding maximum has the shape that we would anticipate. It is generally
diagonal with some deviations. The output two traces appear to be better aligned (the right
panel of Figure 7), but the difference isn’t as reduced as we would hope. Our belief is this
caused by a poor stretching algorithm.

Angle(degrees)
0 5 10 15 20 25 30 35 40

Figure 5. The CRP gather used forU
trace alignment. The third and 16tkg ©
trace were used. bob2-big.gathqr ,ii
[ER] %
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Figure 6: The right plot is the score matrix using two traces from a CRP gather and the
left panel is the similarity matrix. Axes labels refer to time sample numbers (not seconds).
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CONCLUSIONS

We have shown that a robust and efficient algorithm originally developed for protein sequence
alignment can be applied to the pairwise alignment of seismic traces. This has been demon-
strated, in its simplest form, by application to synthetic and real seismic data.

With further work, this approach may supply a general tool for nonlinear alignment of
seismic traces for use in processing and interpretation.
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