next up previous print clean
Next: Absorbing boundary condition for Up: Guojian: Absorbing boundary condition Previous: Introduction

One-way wave equation

For the one-way wave equation

\begin{displaymath}
\frac{\partial p}{\partial z}=
\pm \frac{i\omega}{c}\sqrt{1+\frac{c^2}{\omega^2}\frac{\partial^2}{\partial x^2}}
p,\end{displaymath}

we can write its (2n+1)th order approximation Zhang (1985) in time domain
\begin{eqnarray}
\left(\frac{\partial}{\partial z}\pm\frac{1}{c}\frac{\partial}{...
 ... x^2}\right)q(s_k,t,x,z)
=\frac{\partial^2}{\partial x^2}p(t,x,z),\end{eqnarray} (1)
(2)
where q is the auxiliary wavefield, c is the velocity, and

\begin{displaymath}
s_k=\cos(\frac{k\pi}{n+1}),\ \ \ \ a_k=\frac{1}{n+1}\sin^2(\frac{k\pi}{n+1}),\ \ \ \ k=0,1,\cdots,n+1.\end{displaymath}

When n=0, we obtain the 5o one-way equation
\begin{displaymath}
\left(\frac{\partial}{\partial z}\pm\frac{1}{c}\frac{\partial}{\partial t}\right)p=0.\end{displaymath} (3)
When n=1, we obtain the 15o one-way equation in Claerbout (1999)
\begin{eqnarray}
\left(\frac{\partial}{\partial z}\mp\frac{1}{c}\frac{\partial}{...
 ...al^2}{\partial t^2}q=\frac{1}{2}\frac{\partial^2}{\partial x^2}p .\end{eqnarray} (4)
(5)
When n=2, we obtain the 45o one-way wave equation in Claerbout (1999)
\begin{eqnarray}
\left(\frac{\partial}{\partial z}\mp\frac{1}{c}\frac{\partial}{...
 ...\partial t^2}\right)q=\frac{1}{2}\frac{\partial^2}{\partial x^2}p.\end{eqnarray} (6)
(7)

next up previous print clean
Next: Absorbing boundary condition for Up: Guojian: Absorbing boundary condition Previous: Introduction
Stanford Exploration Project
6/8/2002