- Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: SEP-
**100**, 11-34. - Claerbout, J. F., 1985, Imaging the Earth's Interior: Blackwell Scientific Publications.
- Claerbout, J., 1999, Geophysical estimation by example: Environmental soundings image enhancement: Stanford Exploration Project,
`http://sepwww.stanford.edu/sep/prof/`. - Clapp, R. G., 2001, Geologically constrained migration velocity analysis: Ph.D. thesis, Stanford University.
- Liu, W., Popovici, A., Bevc, D., and Biondi, B., 2001, 3-D migration velocity analysis for common image gathers in the reflection angle domain: 71st Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 885-888.
- Mosher, C., Jin, S., and Foster, D., 2001, Migration velocity analysis using angle image gathers: 71st Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 889-892.
- Sava, P., and Biondi, B., 2000, Wave-equation migration velocity analysis: Episode II: SEP-
**103**, 19-47. - Sava, P., and Biondi, B., 2001, Born-compliant image perturbation for wave-equation migration velocity analysis: SEP-
**110**, 91-102. - Sava, P., and Fomel, S., 2000, Angle-gathers by Fourier Transform: SEP-
**103**, 119-130. - Sava, P., 2000, A tutorial on mixed-domain wave-equation migration and migration velocity analysis: SEP-
**105**, 139-156. - Sava, P., 2001,
`oclib`: An out-of-core optimization library: SEP-**108**, 199-224. - Wang, G. Y., 1997, Wave scattering and diffraction tomography in complex media: Ph.D. thesis, Stanford University.
- Woodward, M. J., 1992, Wave-equation tomography: Geophysics,
**57**, no. 01, 15-26.

Figure 5

01.inversion Anomaly of 1: inversion from the non-linear
image perturbation (7) using the explicit (top),
bilinear (middle) and implicit (bottom) WEMVA operators.
Figure 6 |

Figure 7

05.inversion Anomaly of 5: inversion from the non-linear
image perturbation (7) using the explicit (top),
bilinear (middle) and implicit (bottom) WEMVA operators.
Figure 8 |

Figure 9

20.inversion Anomaly of 20: inversion from the non-linear
image perturbation (7) using the explicit (top),
bilinear (middle) and implicit (bottom) WEMVA operators.
Figure 10 |

Figure 11

40.inversion Anomaly of 40: inversion from the non-linear
image perturbation (7) using the explicit (top),
bilinear (middle) and implicit (bottom) WEMVA operators.
Figure 12 |

6/7/2002