next up previous print clean
Next: Image perturbation by residual Up: Sava and Biondi: Image Previous: Introduction

Image perturbation by WEMVA

In migration by downward continuation, the wavefield at depth $z+\Delta z$ ($\mathcal W_{z+\Delta z}$) is obtained by phase-shift from the wavefield at depth z ($\mathcal W_z$)
\begin{displaymath}
\mathcal W_{z+\Delta z}= \mathcal W_{z} e^{-i \k_z\Delta z},\end{displaymath} (1)
where the depth wavenumber $\k_z$ depends linearly through a Taylor series expansion on its value in the reference medium (${\k_z}^o$) and the slowness in the depth interval from z to $z+\Delta z$, $s_o\left(z \right)$ and $s\left(x,y,z \right)$:
\begin{displaymath}
\k_z\approx {\k_z}^o+ \left. \frac{d \k_z}
 {d s} \right\vert _{s=s_o}\Delta s,\end{displaymath} (2)
where, by definition, $\Delta s=s-s_o$.

If we denote the wavefield downward continued through the reference velocity as $\mathcal W_{z+\Delta z}^o$
\begin{displaymath}
\mathcal W_{z+\Delta z}^o=\mathcal W_{z} e^{-i {\k_z}^o\Delta z},\end{displaymath} (3)
we obtain
\begin{displaymath}
\mathcal W_{z+\Delta z}= \mathcal W_{z+\Delta z}^oe^{-i \left. \frac{d \k_z}
 {d s} \right\vert _{s=s_o}\Delta s\Delta z}.\end{displaymath} (4)

The Born approximation linearizes the phase-shift exponential $\left(e^x\approx 1+x \right)$, such that we can write
\begin{displaymath}
\mathcal W_{z+\Delta z}\approx \mathcal W_{z+\Delta z}^o-i \...
 ...eft. \frac{d \k_z}
 {d s} \right\vert _{s=s_o}\Delta s\Delta z.\end{displaymath} (5)
Therefore, at any particular depth level, the wavefield perturbation $\Delta \mathcal W$ is
\begin{displaymath}
\Delta \mathcal W\approx -i\Delta z\mathcal W\left. \frac{d \k_z}
 {d s} \right\vert _{s=s_o}\Delta s,\end{displaymath} (6)
which we can also write as  
 \begin{displaymath}

\fbox {$ \displaystyle
\Delta \mathcal W\approx \frac{d \ma...
 ...k_z}\left. \frac{d \k_z}
 {d s} \right\vert _{s=s_o}\Delta s.$}\end{displaymath} (7)
The image perturbation is simply obtained from the wavefield perturbation by summation over frequencies:
\begin{displaymath}
\Delta \mathcal R= \sum_\omega \Delta \mathcal W.\end{displaymath} (8)


next up previous print clean
Next: Image perturbation by residual Up: Sava and Biondi: Image Previous: Introduction
Stanford Exploration Project
9/18/2001