RELATING THE DIRECT ARRIVAL TO THE SHOT WAVEFORM

Terry Fulp

Practical problems encountered in shot waveform estimation are often
due to its long duration caused by oscillations of the high-pressure gas
bubbles. Unfortunately, the far-field vertically propagating pulse is not
monitored during the actual survey. What is available (at least in deep water)
is the direct arrival which has traveled a more or less horizontal path.
There are several factors which make this waveform different from the desired
vertical waveform. The antenna responses of the shot array and recording
group array and the free surface reflections are the most important. Any
attempt to use the direct arrival as a source monitor must incorporate the
effects of these phenomena. 1In this paper, we define several linear filters
to include these effects, and thus present a deconvolution scheme which uses
the direct arrival. The objective is to obtain a reflection seismogram which
is a collection of much shorter waveforms and therefore a suitable input to
more conventional shot waveform estimators. A derivation of some of these
filters is possible from an analysis of the recording field geometry and an
equation is developed that should allow for reasonable filter estimates to be

made from the recorded data themselves.

A typical recording geometry is depicted in Fig. 1, where we define
several time series and geometrical parameters. The waveform sent into the sub-
surface, BV(Z), will depend upon the characteristics of each air gun, interac-
tion of the individual gas bubbles due to gun spacing, and the depth of the
source array. Let B(Z) be the near-field acoustic pulse from one of the guns,
assuming that they are all nearly the same and omnidirectional. We define a
filter, S(Z), which sums the near-field vertical pulse from each gun, and a

filter, GS(Z), to account for the ghosting effect due to the source depth.

Then we can write

BV(Z) = B(Z) S(Z2) GS(Z). (1)
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In the real experiment, an array of guns is used in an effort to produce a net vertical
waveform which is shorter than the near-field pulse of each gun. GS(Z) acts
as a differentiator [Eq. (8)] due to the near-perfect free surface reflector.
Likewise, we can define a filter, IS(Z), and write the horizontal waveform

as

Bh(Z) = B(Z) IS(Z). (2)

IS(Z) can be shown to be an integrator [Eq. (9)] and will depend upon the

separation of the guns and the total length of the array.

Neglecting the later arriving vertical waveform, the net wavefield
arriving at the streamer cable will be composed of this nearly horizontal shot
waveform, Bh(Z), plus various reflected phases from the free surface as shown
in Fig. 1. 1In addition, the recording of a single channel is done over a finite
number of phones making up the group. Defining a ghosting filter, Ga(Z), we
can write the waveform arriving at the first phone of the near-group as
Bh(Z) Ga(Z). Let's assume that this waveform is the net waveform traveling
down the streamer and recorded by each phone in the group. Then the recorded

direct arrival is given by

AZ) = B (2) 6,(2) 1), (3

where Ig(Z) is an integrator due to the recording group. Substitution of (2)
into (3) gives

A(z) = B(2) ¢, (2) T_(2) Ig(Z), (4)

and using (1) for B(Z) we have

B (Z) 1T (Z) I (Z2) G (2)
Az) = S & S (5)
S(Z) GS(Z)

which relates the recorded direct arrival A(Z) and the vertical shot wave-

form BV(Z).

Finally, we wish to write an expression for the colored reflection
seismogram R(Z). The ghosting effect due to the cable depth is included by
introducing another ghosting filter, Gg(Z). Then,
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R(Z) = B,(2) R(D) 62, 6)

where R(Z) 1is the uncolored or broadband seismogram. Solving for R(Z) and

using Eq. (5) to eliminate BV(Z), we arrive at the desired result,

R(Z) I.(2) I(2) G (2) R(Z)
R(Z) = & = 0(2), (7)
A(2) 8(2) 6,(2) €_(2) A(Z)

a deconvolution scheme involving the direct arrival. Now the problem of estima-
tion and deconvolution of a long source waveform becomes one of estimating the

operator, O0(Z), and applying (7).

Referring again to the recording geometry shown in Fig. 1, we can write
analytical expressions for some of the components of the operator O0(Z). Expres-
sing the two-way travel time delay due to the source depth ds as oAt, where
o 1s some number representing units of time delay, and At 1is the sampling
interval, the ghosting filter at the shot is

[0 1
GS(Z) = 1-2. (8)

In addition, the summation effect producing the horizontal waveform is given by
K §
I(z) = 1-29/1-2%, 9

where § At dis the time delay of each pulse due to the gun separation, and
k At 1is the entire time delay over the length of the array, ls' The effect of
the 1-2° term is to limit the integration to the finite array length. In

writing (9), we have assumed that the gun separation is constant.

The reflection from the free surface of the nearly horizontal waveform
will be delayed in time according to the depths of both shot and phone arrays
and the offset. Letting that time delay be ¢ At, where ¢ will in general be
<< 1 since f >> ds or dg, this ghosting effect is given by

G (2) = A (10)

The integration effect of the group will be analogous to that at the source

array and is given by
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1@ = Q- 25y -2%, (11)

where 1At represents the time delay between the successive phones in the
group and B At the entire time delay over the group interval lg' Again, we
have assumed that the phones are equally spaced over the group. Assuming near
vertical incidence of the upcoming waves and letting vy At be the two-way time
delay due to the cable depth, we can express the ghosting filter at the cable
as

Gg(Z) = 1-2z, (12)

Recalling the operator given in (7),

I (z2) I (Z) G (2)
0iz) = -2 & 2, (13)
S(Z) GS(Z) Gg(z)

and using the filter estimates above, we obtain an estimate of the operator

given by

. 1-2z%@-z°a-z%

0(z) = . (14)
a-z5a-zHa-z%a-2n

In general, we cannot estimate the complicated effects included in the filter
S(Z) from the shot array configuration. The interaction of the gas bubbles to
produce a net downgoing waveform is very complicated and most likely a nonlinear
process. Moreover, commonly used shot patterns employ several different sized
guns, which are not equally spaced, and, oftentimes, not fired simultaneously.
Even the individual phones in a group are usually not spaced equally over the
entire group length, although this effect is probably negligible. However, we
can think of applying a deconvolution using the direct arrival and our estimate

of the operator,
Z ~
R(z) = NE Gz, (15)
resulting in a seismogram that is a collection of much shorter waveforms. A

time domain formulation of (15) will not be stable since the denominator of the

operator is not causally invertible. And since the positions of the "holes"
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in the spectra of these ghosting filters will be highly sensitive to the
appropriate time delays, a frequency domain application will most likely involve

divisions by very small numbers.

We note that most of the components of the operator given by (13) are short

in time, although the operator itself is not. If we write the numerator of the

operator,

N@Z) = I(2) 1(2) 6@, (16)
and the denominator,

D(Z) = S(2) € (2) G (@), eB))

we might be able to estimate these expressions from the data, as in the case of
a short source waveform. Referring to Fig. 2, we can write analogous expressions
for the gated primaries and multiple including the important ghosting effect at

the streamer:

PI(Z) = BV(Z) Gg(Z) . Cl > (18a)
P2(2) = B(2) 6(2):Cp (18b)
-M;(Z) = BV(Z) Gg(Z) *C;*Co . (18¢)
Sy '%Jﬂ &)N“
5, B,
c, c,

FIGURE 2.—~—S; and S, are two adjacent shot points; p; 1is the primary
corresponding to the first one and ps to the second; m; is the first mul-
tiple, corresponding to the first shot. The waveform of both sources is con-
sidered the same. [Taken from Estevez, SEP-8, p. 204.]
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Combining Eqs. (18) yields
P1(2) Pp(2) = -B (z) M(2) G, (2). (19)

Substitution of Eq. (5) for BV(Z) in terms of A(Z), the recorded direct

arrival, gives
P1(Z) Po(Z) N(Z) = -A(Z) My(Z) D(2Z). (20)

This equation is the basis for the estimation of the numerator and denominator

of the operator, O0(Z), directly from the data.

There are several ways one might approach solving Eq. (20) for the
desired filters. Utilizing convolution matrices for (p; =*pp) and (a%xmp)

we can write (20) as either

) P1 %P2 | [n ] = ;*ml*d— , (21a)

or : .j i _f J#
a*m K = | p1*p2*n (21b)

L - L 4

Both (2la) and (21b) represent overdetermined sets of equations for the unknown
filter coefficients of n or d. Given an initial guess for d, we first
solve (2la) for n. Then with that estimate for n, we solve (21b) for d and
proceed in an iterative manner, with the hope that the solutions will converge
to those estimates that best minimize, in a least-squared sense, the error,

= K. % % %
Ei (p1*p2 n)i + (a*m; d)i.

A synthetic model was created to test the validity of this approach.
Vertical propagation was assumed, so that c¢y;=cy and p;=py in Fig. 2 and

Eqs. (20) and (21). The numerator of the operator was taken tobe N(Z) =1 - 28 and the
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denominator D(Z) = (1-—Z3)(l-25). Figure 3 shows the bubble pulse, the
recorded direct arrival, the gated primary, and the gated multiple. Also shown
are p*p*n and m*a*d which should sum to zero. The norm of the error in the
model was 0.699e - 09. The result of solving Eqs. (21) iteratively are shown in
Fig. 4. An initial guess of D(Z) = (l-—Z3)(l-ZS) (the true d) was used.
Through five iterations, the estimates of n and d are diverging from the true
solutions. The norm of the error in Eq. (20) after the fifth iteration was
0.299e-04. Other starting values of d were chosen with essentially the same
results. Once errors are introduced (either from the initial guess or just the
approximate nature of the least-squares solution) they tend to accumulate as the

iteration proceeds, pushing the estimates further from the desired solutions.

Alternatively, we could view the solution of Eq. (20) as a two-channel

least-squares problem as shown below:

Pt Py "

A M

where the output should be zero. Although this formulation seems promising, we

have no positive results to report at this time,
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P(Z) = B(Z) D(Z) + C M(Z) =-B(Z) D(z) - c?
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(e) top trace is
M(Z) A(Z) D(Z).

as given by Eq. (20).

P(Z) P(Z) N(Z)
The two traces should sum to zero,

and bottom trace is

FIGURE 3.—Synthetic traces.
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(a) True d and computed d for five iterations of Egqs. (21)
20-pts long (25 pts plotted). Error norm =-%{ Zldz-d
dt==true d, dc==computed d, n = 20. +
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(b) True n and computed n for 5 iterations of Egqs. (21).
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FIGURE 4.



