LATERAL VELOCITY ESTIMATION FROM UNSTACKED DATA

Walt Lynn

Introduction

In the presence of strong lateral velocity variations, velocity estima-
tions based on surface data are often incorrect or of low quality. A more
accurate velocity estimation can be made at some depth by basing the velocity
estimate on the data that would be produced and recorded near that depth.

These data can be simulated by downward continuing the common shot and common
geophone gathers to some datum level and thus removing the effects of any known
or estimated lateral velocity variations above this level. In this paper, we
will present the background and motivation for such a method of velocity estima-
tion based on the downward continuation of unstacked data, i.e., common shot

and common geophone gathers.

One type of problem in estimating velocity in a laterally varying
medium with CMP gathers is illustrated in Fig. 1. Shown is a low-velocity lens
embedded in the upper layer of a two-layer medium. The lateral extent of the
lens is roughly one-third that of the maximum offset. For the CMP gather whose
midpoint is centered over the lens, the velocity below the lens to the plane
reflector will appear faster because of the decrease in moveout on the near off-
sets. Ideally, we would like to measure the velocity below the lens using the
setup in Fig. 1(b) so that the effect of the lens is removed. Because CMP
gathers are not true wavefields,* however, there is no way we can create the
experiment in Fig. 1(b) by downward continuing the surface CMP gathers (common
offset gathers won't work either). To create the experiment in Fig. 1(b), we
must downward continue the true wavefield common shot and common geophone

gathers and reorganize the data into CMP gathers. Such a procedure is

*We use the term true wavefield to mean a wavefield that can be reproduced
by a single experiment consisting of one receiver distribution recording
the energy from one source distribution.
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cumbersome and therefore we are motivated to develop a velocity estimation
procedure based on the common shot and common geophone gatherers themselves

without having to reorganize the data at each depth into CMP gathers.

An integral part of velocity estimation using unstacked data is the use
of the 15° approximation to the wave equation as the downward continuing oper-
ator, since this equation can be made velocity independent by a simple change
of coordinates (this will be shown later). The advantage in doing this is that
the data can be migrated immediately after the velocity estimation by simply
transforming the wavefield back into the real earth coordinates. This elimin-
ates an additional step of starting over and redoing the downward continuation
with the correct velocity to get the downward-continued wavefield, as is the
case with bootstrapping velocity estimation methods. Unfortunately, the range
of propagation angles in common shot and geophone gathers usually exceeds the
accuracy limitations of the 15° equation. We will show that alleviating this

problem leads to the use of slanted coordinates.

Before discussing velocity estimation using the unstacked downward con-
tinued field gathers, we will first outline the method of plane-wave stacks
(p~stacks) using stacked downward continued data since it has only been presented
orally (Schultz and Claerbout [1]). Following this, we will show (1) how to
estimate velocity using unmoved-out downward-continued data (assuming, incor-
rectly, the 15° approximation is valid), and then (2) how it is to be applied to

linearly-moved-out data (where the 15° approximation is valid).

Velocity Estimation Using Plane-Wave Stacks

What follows is only a terse description of velocity estimation using
plane wave stacks and is intended to fill in a gap in the SEP reports. For

greater detail, the reader is referred to Schultz's thesis [2].

The central idea of plane wave stacks is to synthesize a downgoing plane
wave from common shot or common geophone gathers (depending on the desired angle
of propagation of the plane wave), where each plane wave is characterized by a
ray parameter p=sinf/v. Invoking reciprocity we can always interchange the
shot and receiver positions, and so, in the case of a common shot gather, to
simulate a plane wave traveling from the geophones back to the source, we simply
apply a linear moveout to the common shot traces and superimpose them [see
Figs. 2(a), (b)]. The linear moveout applies only if the near surface velocity is

constant; otherwise some other summation trajectory will apply. The resultant
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trace approximates a seismogram recorded as if the actual source were a plane

wave, with a ray parameter and becomes one member of a p-gather [Fig. 2(c)].

P
The other members of the p-gagher are found by synthesizing many different plane
waves all of which are characterized by a unique ray parameter p . When these
stacked traces are displayed side by side for linearly increasing values of p,
it turns out that a hyperbolic event in (x,t) space becomes an ellipsoidal
event in (p,t') space. The shape of the ellipse depends directly on rms
velocity, so the rms velocity to the event can be estimated by calculating a

coherency or semblance along the ellipse for different velocities in much the

same manner as it is calculated for hyperbolic events.

The quality of the velocity estimate is directly related to the quality
of the plane wave. If the medium contains lateral velocity variations, the
initial plane wave becomes distorted and any velocity estimations based on this
source are consequently deteriorated. To obtain accurate velocity estimates at
depth, it is therefore desirable to resum the common shot gathers along a
trajectory that will simulate a plane wave at the desired depth. To do so, we
use the velocity estimates from all p-gathers down to some level z, and
propagate the desired datum plane wave back up to the surface [see Fig. 2(d)].
The shape of the wavefront at the surface determines the summation trajectory
needed to create the desired plane wave at zq [Fig. 2(e)]. However, because
of known or estimated lateral velocity variations, the summation trajectory
needed to create a plane wave at the required depth will in general no longer
be a straight line (for more details, see refs. [2] and [4]). After the velocity
has been estimated for all gathers, a new set of datum plane waves is simulated

at still greater depths by using the velocity estimates of the previous steps,

and the entire procedure is repeated until the whole section is processed.

Using p-stacks to estimate velocity in a laterally varying medium is
theoretically sound but has the undesirable quality of being cumbersome in
practice. At each level, a new p-gather must be created by generating the neces-
sary summation trajectories for each common-shot (or common geophone) gather.
Migration is accomplished by downward continuing both shots and geophones, but
this can be accomplished only after the velocity has been estimated. We are
thus motivated to develop a velocity estimation procedure which deals with the
unstacked downward continued shot and geophone gathers directly and allows us to

estimate velocity and migrate the data at the same time.
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Velocity Estimation with Unstacked, Unmmoved-out Data

Consider for the moment a common shot gather whose cable length is short
enough so the impinging recorded energy travels along rays within 15° to the
vertical. We will later relax this restriction when we transform the data to a
slanted coordinate system, but for now we will keep it to illustrate how we can

use downward-continued data to estimate velocity.

In a retarded time frame for upcoming waves (t'==t4-éz dz/v) , the full

wave equation becomes

vaxv + Qz'z' + (Z/V)sztt = 0, (1)

where Q 1is the wavefield described in the primed coordinate system, and x' is
the geophone or shot location (depending on whether the gather is a common shot or
a common geophone one). If the 15° approximation is valid, then the Qz'z'

term may be omitted, leaving the well-known 15° equation:

Q

z't! _(V/Z)QX!XV' (2)

Defining a new coordinate,

V4

f v dz , (3)
0

dl

and changing variables from =z' to d', makes Eq. (2) velocity independent.

- _ 1
Qd't' - - 2 Q | (4)

Since the transformation of the surface data requires no information about
velocity (68 dz = 0), we can use Eq. (4) as our operator to downward continue
both the shots and geophones. After we estimate velocity (shown next), a simple
coordinate transformation back to real earth coordinates produces a migrated

gather.

The velocity is estimated by measuring the values of d' at which

the events focus and the top of the hyperbola tg' :

20
doy = [ v dz, (5)
0
20
to' = f '('i~z' . (6)

0 v
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Combining (5) and (6) yields directly a measure of the rms velocity to a par-

ticular event:

1 0 d0
.2 =_j Car = 9 (7)

Unfortunately, the 15° equation is not an accurate operator to use on unmoved-
out field data because the propagation angles vary substantially beyond 15°
from the vertical. Consequently, it is necessary to keep the sz derivative

in Eq. (1), which can be approximated from (2) as

) (8)

£!
Qv v =—§QX'

z'z x'z!

where the t-superscript denotes a time integration. Substitution of (8) into
(1) gives the so-called 45° approximation:
Qrpr = _.% Qx'x' + %; Qizx'z' ’ €
Equation (9), however, cannot be made velocity independent like the 15° equation
(2). Hence, any velocity estimation scheme using downward continued data with
the 45° equation (or better) must be an iterative one. That is, an initial
velocity function must be estimated and the data migrated using that estimate.
Depending on the amount of over- or undermigration of particular events, the
old velocity estimate can be improved. The migration can be repeated with new
velocity estimates until all events focus as well as possible. Such a procedure
is also cumbersome, but for unmoved-out field data there is no apparent alter-

native.

Downward Continuation of Linearly Moved-Out Data

The range of propagation angles for common shot and common geophone
gathers is usually centered around some non-zero angle to the vertical. If,
instead of downward continuing the gathers straight down, we downward continue
them along some average incident angle [compare Figs. 4(b) and 5(b)], then it
becomes possible to use the 15° equation as our wave propagator. Moreover, we

can then take advantage of a transformation similar to Eq. (3) that makes the
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wave equation velocity independent. We will see shortly that the result of a
slanted downward continuation is to make the energy migrate not to the top of
some hyperbola, but to some point on its flank. 1In a linearly moved-out coordinate

system, this point becomes the top of a skewed hyperbola.

In this section, we will first demonstrate how to estimate velocity using
the location of the point on the hyperbola flank. Secondly, we will demonstrate
that since energy does not have to migrate as far, downward continuation of

linearly moved-~out data is less sensitive to velocity errors.

Figure 3(a) shows a hyperbolic event recorded at the surface due to a
plane layer at 25 = v tg . If we fix a slope p (which is a ray parameter) to
a line in (x,t) space and slide the line down until it is tangent to the hyperbola
at some fq,tg (fg=offset), then the rms velocity along the ray path from the
shot s to the geophone at gz 1is given by
9 fo/tg'

v = , (10)
pl1 + p(fp/ty")]

where tg'= ty-p f3 . This result is derived by Claerbout [3]. A velocity
estimate can be directly made on the parameters p, fy, and ¢ty , without any
need for measuring curvature. Consider now applying a linear moveout, t' =

t-pg f, to the gather in Fig. 3(a). The effect of this moveout is to make the
tangency point the top of some hyperboloid and the problem of estimating velocity
becomes one of locating this top [see Fig. 3(b)]. As we want to consider velocity
estimation in a laterally varying medium, it is necessary to perform

the velocity estimation on downward-continued data as opposed to surface data.

If we migrate the linearly moved-out gather in Fig. 3(b), the problem of estimating
a tangency point becomes one of estimating a focus. The downward continuation in
the linearly moved-out coordinate system is equivalent to pushing the geophones
down at some non-zero angle to the vertical. This has several advantages over

the vertical downward continuation that we will now discuss.

Figure 4(b) illustrates how energy emanating from a point migrates as the
geophones are pushed straight downward. The hyperbola branches in Fig. 4(a) show
the corresponding travel time hyperbolas recorded at the different depths. As the
geophone depth approaches the depth of the point scatterer, the energy migrates
toward the receiver directly over the scatterer. If the correct velocity is used,

the geophones are downward continued to the correct depth and the hyperbola collapses
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t'=t-pg

FIGURE 3.—Velocity estimation without measuring curvature.
(a) Rms velocity from s to gg can be directly measured from the
parameters ty, fg3, and p by Eq. (10). (b) Effect of a linear
moveout on the hyperbola. Point of tangency is now the top of the
skewed hyperbola. The problem of finding tangency points now

becomes one of finding hyperbola tops, an operation perfectly suited

for migration. See reference [2] for the development of this method.
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FIGURE 4.—Vertical downward continuation of receivers. (a) Travel time
curves from a point scatterer at z =z to receivers at different z levels.
As the receiver level approaches the point scatterer level, energy migrates
toward the zero offset trace. If the receivers are pushed down too far, by
overestimating velocity, the energy migrates through the focus and forms the
inverted hyperbola branches in the upper left-hand quadrant. The large devi-
ation of propagation angles precludes the use of the 15° equation as the down-

ward continuation operator. The hyperbola branches are plotted vs. retarded in
Fig. 6(a).
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to a focus at the receiver directly over the scatterer, If too high a velocity
is used, the receivers are downward continued too far and the energy migrates
through the focus and outside of the gather, forming the inverted hyperbolas
in the upper left-hand quadrant. Hence, the lower right-hand quadrant in
Fig. 4(a) represents undermigrated energy and the upper left quadrant represents

overmigrated energy.

Consider now the situation where the geophones are downward continued
along some slanted path to the vertical [Fig. 5(b)], and for the moment assume a
constant velocity medium. Each geophone is pushed down along a straight line of
constant x', where

x' = x+ z tanh.

Figure 5(a) shows how the hyperbolas collapse to a point as the geophones are
pushed down toward the point scatterer. Only now the energy migrates to a point
on the flank of the original surface recorded hyperbola [shown by dashed line in
Fig. 5(a)] corresponding to the receiver at xy . This is the situation we want
to estimate velocity using the scheme shown in Fig. 3. If the receivers are
pushed down too far, because of overestimating velocity, the energy again migrates
through a focus forming the inverted hyperbolas in the upper right quadrant. The

overmigrated energy in this case, however, has not migrated off the gather as in

the case of vertical downward continuation.

It is important to note that since the hyperbola is collapsing to some
point on its flank, the energy does not have to migrate as far to get there.
Instead of migrating to the inner traces when downward continuing vertically, the
energy is now migrating from both the inner and outer traces towards some inter-
mediate trace. Intuitively then, the downward continuation should be less sensi-
tive to velocity variations or errors. We also note that energy is migrating to
a point which actually exists on the surface data, whereas in the case of the
vertical downward continuation, it is not if the zero offset trace is missing (as

it usually is in marine data).

Figure 6 illustrates the concepts of Figs. 4 and 5 in the retarded time
frames used in the migration of upcoming waves. Figures 6(a) and (p) correspond
to vertical and slanted downward continuation and are the same as Figs. 4(a) and
5(a), respectively, but the depth dependent time shift has moved all of the hyper-
bolas so they are tangent at the focus point. The time shift for the data in 6(a)

is the well-known upgoing wave transformation, t'=t+z/v and in 6(b) is
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FIGURE 5.—Slanted downward continuation of receivers. The direc-
tion of downward continuation is shown by the dashed lines in (b). The
travel time curves in (a) are plotted in x',t space, where x'

(= x+2z tanb) is constant along the slanted paths. As the receivers are
downward continued, energy migrates towards a point on the flank of the
original surface hyperbola, corresponding to x'=xy' (vertical dashed line).
The hyperbolic tails in the lower and upper quadrants correspond to under-
and overmigrated energy, respectively. Because the direction of downward
continuation splits the range of propagation angles from the point scatterer,
the 15° equation can be used as the downward continuation operator. See
Figs. 6(b) and 6(c) for more information.
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t" = t+z/(v cos®). The cos_le factor in the latter case accounts for the
added travel time to get to a certain depth via a slanted path as opposed to a
vertical path [see Fig. 5(b)]. The dashed arrows in these figures show the
path in (x,t') and (x',t") space that energy follows as the receivers are
continued downward. In the case of vertical downward continuation, 6(a), the
energy migrates from the outer to inner trace and focuses at x=0. If an
incorrect velocity is chosen to do the migration, then the hyperbola will
either not collapse totally or will collapse beyond the focus corresponding

to the undermigrated and overmigrated cases shown in the inset in 6(a). 1In the
case of slanted downward continuation, energy migrates from both the near and
far offsets towards a central focus point on the hyperbola. The inset in 6(b)
shows the analogous result of under- and overmigration in the slanted frame.

A comparison of the insets in 6(a) and 6(b) indicate that the slanted downward
continuation is much more tolerant to velocity errors than the vertical down-

ward continuation.

Figure 6(c) shows the hyperbolas as they appear in the actual (x',t')
space (defined below) during the downward continuation. The focus in this

coordinate system is the top of the skewed hyperbola as shown in Fig. 3.

Combining the ideas of linear moveout and slanted directions of down-
ward continuation, we write the following stratified media coordinate transforma-

tion

z
x + f tand(z) dz,

X —
0
z'! = 2z, (11D
z
e = t-px%—f cosf(z) dz )

v(z)

Note that no knowledge of velocity is needed to transform the surface data

into the slanted system.

The Jacobian for the coordinate transformation (11) is

: -1
' ' ' _
tt tx tZ ] (], P Vv “cosf
x x! x'|=]0 1 tand | . (12)
z€ z£ z; i 0 0 1 J
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The invariance of wavefields implies P(x,z,t) = Q(x',z',t'). Taking the

appropriate partial derivatives and substituting into PXX+-PZZ= (l/vz)Ptt,

2 cosd 2 1
[(‘PBt'+8X;) +(T‘ Bt,+tan6 BX,+3Z,) ——\;Eat't']Q = 0.

The coefficients of the at't' and ax't' terms vanish identically, and the
remaining terms leave
(1+ tan26)Q 4+ 2cos8 + Q +2tand Q = 0 (13)
x'x' v z't’ z'z' x'z! :

We now assume that the Fresnel approximation is valid and drop the last two
terms, leaving

\'

Qvtv=‘_—_—_Qv'- (14)

2cos 30 XX

Dropping the Qx'z' term in (13) means that the skewed hyperbolas in the

slanted coordinate system will be treated as if they were true hyperbolas.

Equation (14) is simply the 15° equation with the velocity weighted by

an inverse cos36. Defining a new coordinate

v

Z
ar = f dz (15)
0

cos36

enables us to write a velocity-independent 15° equation as before,
1
Qd't' - 5 QX'X'. (16)

In the slanted coordinate system defined by Eq. (11), we expect that the
15° wave equation can be used as the wave operator to downward continue the com-
mon shot and common geophone gathers. Consequently, we can make the downward
continuation step velocity independent. Once the velocity has been estimated
down to some level, the corresponding wavefield at that level can be foumnd by
simply transforming back into real earth space and time coordinates. Our next

step will be to set up an operational procedure of velocity estimation based
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on slanted downward continuation using Eq. (16) and the transformation (11).
The velocity estimates will be based on the locations, in (x',t') space, of
the tops of the skewed hyperbolas. Since the downward continuation is velocity
independent, the migrated section will be readily obtainable by transforming

the gathers back to real earth coordinates and using the zero-offset traces.
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