
Chapter 1

Smoothing along geologic dip

INTRODUCTION AND SUMMARY

Velocity estimation is generally under-determined. To obtain a pleasing result we impose

some type of regularization criteria such as preconditioning(Harlan, 1996), limiting inversion

solutions to large singular values (Rowbotham and Pratt, 1997), or characterizing the model

through a small number of spline coefficients (Ji, 1997). These methods all create velocity

models that can correctly model the recorded travel times, but are often geologically unrealis-

tic.

To create more geologically feasible velocity models and to speed up convergence, Miche-

lena and Harris (1991) suggested using varying sized grid cells. Unfortunately, such a param-

eterization is prone to error when the wrong size blocks are chosen (Delprat-Jannaud and

Lailly, 1992). Other authors have suggested locally clustering grid cells (Carrion, 1991) or

characterizing the velocity model as a series of layers (Kosloff et al., 1996). These methods

are also susceptible to errors when the wrong parameterization is chosen.

An attractive alternative approach is to add an additional model regularization term to the

objective function (van Trier, 1990). In theory, this regularization term should be the inverse

model covariance matrix (Tarantola, 1987) obtained from somea priori information sources.
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2 CHAPTER 1. SMOOTHING ALONG GEOLOGIC DIP

For tomography, a geologist’s structural model of the area, well log information, or prelimi-

nary stack or migration results all could provide useful information. Incorporating these varied

information sources into the objective function is problematic. Geostatisticians have success-

fully combined these mixed types of information (Hirsche et al., 1997). Unfortunately, the

geostatistical approach does not easily fit within a standard global tomography problem. More

promising approaches were presented by Delprat-Jannaud and Lailly (1992) and Kaipio et al.

(1999). Delprat-Jannaud and Lailly (1992) incorporated into the objective function a term

encouraging the velocity gradient to follow reflector position. Kaipio et al. (1999) suggested

usinga priori structural information to create conditional covariance matrices.

In this chapter I take a different approach to adding geological dip information to velocity

estimation. I start from the same basic assumption as Delprat-Jannaud and Lailly (1992);

that velocity follows structural dip or some other known trend. Rather than minimizing the

velocity gradient directly in the objective function I note that I can approximate a single dip

by creating small plane wave annihilation filter (Claerbout, 1992a). By adjusting the shape

and coefficients within this filter (which I refer to as adip penalty filter), I can approximate a

wide range of covariance responses. By building a space varying regularization operator out of

these filters (asteering filter) I can approximate a model covariance which is space-variant. To

speed up convergence I reformulate the regularization problem as a preconditioned problem

(Claerbout, 1998a) using the helix transform and polynomial division (Claerbout, 1998b).

I will begin by introducing a simple missing data problem. I show how the geophysicist

and geostatistician find different ways to characterize and incorporate the model covariance

function into an inverse problem. One geophysics approach, applying a Prediction Error Filter

(PEF), can often obtain a better image. The downside of the PEF approach is it requires

having a field with the same statistical properties as the variable we are attempting to estimate.

I then introduce another way to characterize the model covariance function, dip penalty filters,

that combines the geostatistician’s ability to use disparate and irregular information sources

and the geophysicist’s ability to solve complex inversion problems. I go on to describe how

to find dip penalty filter directions and how to build a steering filter. I show how to speed up

convergence by reformulating problems in terms of preconditioning rather than regularization.

I conclude the chapter by showing that a steering filter improves the tomography estimate using
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the synthetic introduced in Chapter??.

WHY REGULARIZE?

In general, geophysical inverse problems (inverting for some modelm, given somed, while

applying some operatorL ) are ill-posed. A classic example of this is the missing data prob-

lem (Claerbout, 1998a; Isaaks and Srivastava, 1989). The goal of the missing data problem

is to interpolate intelligently between a sparse set of known points. For example, let us take

a synthetic velocity model with an upper horizontal reflector, an anticline between two un-

conformities, and updipping layer at the bottom of the model. Suppose we have velocity

measurements at several wells and you would like to interpolate it onto a regular 2-D mesh,

Figure 1.1.

Figure 1.1: Left panel shows a synthetic velocity model, right panel shows a subset of that
data chosen to simulate well log data.steer-well-logs[ER]

The geophysicist might follow the approach described by Claerbout (1998a), first interpo-

lating the irregular data onto a regular mesh by applying some type of binning operator,B,
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Figure 1.2: Interpolation result after
200 iterations using an inverse Lapla-
cian regularization operator. Note
the edges effects at the top and
bottom of the model due to us-
ing an internal convolution operator.
steer-qdome-lap[ER,M]

then defining a fitting goal that requires the model to fit the data exactly at the known pointsJ.

JBd ≈ Jm. (1.1)

At model locations where there are no data values we want the model to be ‘smooth’, therefore

we will use Tikhonov regularization(Tikhonov and Arsenin, 1977) to minimize the output of

a roughening operator applied to the model,

0 ≈ Am. (1.2)

For the remainder of the thesis I will refer to (1.2) as themodel stylinggoal.

If we don’t have any other knowledge about the model, an isotropic operator like the

Laplacian might be a logical choice forA. If I apply the fitting goals implied by (1.1) and

(1.2) for 200 iterations using the Laplacian forA, I get Figure 1.2. The result is what has been

euphemistically referred to as the ‘ice cream cone result’ (Brown, 1998). By spreading infor-

mation isotropically the model goes smoothly from the known points to some local average.

We see little to no continuation of layers, generally a thoroughly unsatisfactory result.
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APPROXIMATING THE COVARIANCE MATRIX

With no other information the Laplacian might be the best regularization operator that we

could use. But if we know something else about out model, can we do better? According to

Bayes theory we should be using the inverse model covariance for the regularization operator.

Unfortunately the model covariance matrix is not generally obtainable. If the model covariance

matrix is unreasonable to estimate and use, what is a more reasonable goal?

All statistical measures have underlying assumption of repetition. The model only has a

single value at each location, as a result common practice is to use nearby points to simulate

repetition. By using multiple points we are making an assumption of stationarity. The defi-

nition of stationarity for a random process is that the joint distribution of any two points does

not depend on their location just the vector distancex.

If we accept the stationarity assumption there are several related ways that we can charac-

terize the relationship between nearby points. If we transform our model into the frequency

domainM(k) we can calculate the model’s spectrumS(k):

S(k) = SM(k)M(k). (1.3)

We can obtain an equivalent measure in the space domain by calculating a model’s autocorre-

lation. The covarianceC(x) is just the autocorrelation with the mean subtracted,

C(x) =< mi − m̂i > − < mj − m̂j >, (1.4)

where

<> is an ensemble average.

mi and mj are points separted by the distancex.

m̂i and m̂j are the average values.

Figure 1.3 shows the result of applying equation (1.4) to the left panel of Figure 1.1. In the
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next subsections I will show how geophysicists and geostatisticians use these related measures

to solve the missing data problem.

Figure 1.3: Spatial covariance matrix
for the velocity model in Figure 1.1.
Note that the dip below the lower un-
conformity dominates the covariance
calculation. steer-model-covar[ER]

Geophysical approach

A standard approach at SEP, and to a limited extent the geophysical community at large, is to

characterize the model covariance through a Prediction Error Filter (PEF). The geophysicist

notes that if we solve

Ma ≈ 0, (1.5)

whereM is convolution with a field that has the same properties as the model, anda is the PEF,

the output of this convolution is white (Claerbout, 1992a). Thereforea must have the inverse

spectrum of the model. This is only true if we have chosen a sufficient shape and size fora.

By changing the shape ofa we can control how many and which dips of the model we see. If

we constructa to find dips at all possible angles and then apply (1.5) we get Figure 1.4 as the

impulse response of the filter. The PEF captured the prominent dip going up at approximately

15 degrees and also a minor dip going down at approximately 30 degrees. The right panel of

Figure 1.4 shows the result of applying the PEF to the missing data problem. We have done a

substantially better job filling in the missing data compared to the Laplacian result, Figure 1.2,
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but its still far from ideal. The filter has introduced both dips at every location and as a result

we have a model that is unreasonable.

Figure 1.4: The left panel shows the impulse response of the PEF found from the velocity field
(left panel of Figure 1.1). The right panel shows the result of applying the PEF to the missing
data problem (the input being the right side of Figure 1.1).steer-gp-mis[ER]

Geostatistical approach

The geostatistician takes another approach, called kriging. Instead of solving a global opti-

mization problem the geostatistician solves a series of small inversion problems. They assume

that the model pointm(u) (whereu is its location in the vector space) is a linear combination

of n nearby data pointsd(u1)...d(un),

m(u) =

n∑
α=1

λα(u)dα. (1.6)
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The weightsλα are calculated to minimize the error variance and result in the set of equations,
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EachC(x) is taken from a predefined covariance estimate (Figure 1.5). To guarantee that the

matrix in equation (1.7) is positive definite the geostatisticians approximate the covariance

function through a linear combination of a limited set of functions. Each function is described

by:

range, the distance at which the covariance function is essentially gone to 0,

anisotropy, the amount the covariance function depends on radial angle, and

orientation, the major orientation axis of the covariance function.

These parameters are used to describe a spherical, exponential, Gaussian, or power model that

are guaranteed to produce a positive definite covariance matrix.

The left panel of Figure 1.6 shows the geostatistical approximation of the model covariance

for the missing data problem. This approximation does a good job characterizing the primary

dip of the covariance function, but does not accurately describe therangeof the covariance

function. The right panel of Figure 1.6 shows the result of applying kriging to the same missing

data problem. The result is fairly comparable to the geophysics result. Instead of adding a

second dip at every location we have only forced the primary dip. Because this approximation

adds insufficientrange for the covariance function the answer returns to the local average

between the two wells with the greatest separation. Overall the result is as unsatisfactory as

the geophysics approach to the problem.
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Figure 1.5: Definition of the terms in equation (1.7). A vector is drawn between two
points. The covariance at the angle and distance describing the vector is then selected.
steer-covar-def[NR]

Figure 1.6: Left panel shows the approximated covariance matrix, right panel is the result of
solving equation (1.7) at every unknown model point.steer-geostat-mis[ER]
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STATIONARITY

Both the geostatistical and geophysical approach give poor results because we are ignoring

a basic tenet that both methods are built on: stationarity. An underlying assumption of both

methods is that the statistics of the data do not vary with location. If we look at the covariance

at four different regions in the data, Figure 1.7, we can see that covariance changes dramati-

cally throughout the model. The top left covariance is taken from the flat structure at the top of

the model, and shows a strong horizontal trend. The top right represents the covariance along

the upper portion of the anticline and has a slight dip down to the right. The bottom left is the

covariance from the lower portion of the anticline and captures the sharper dip down-right in

the region. The final panel, the bottom-right represents the area below the unconformity and

captures the up-dipping structure.

Figure 1.7: The covariance at four different regions of the model (left panel of Figure 1.1).
The top left is above the upper unconformity; top right, the upper portion of the anticline;
bottom left, lower portion of the anticline; and bottom right, below the lower anticline.
steer-covar-change[ER]
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Patching

A common solution to this non-stationarity is to break the problem into patches (geophysics

terminology) (Claerbout, 1992b) or ‘distinct sub zones’ (geostatistics terminology). We define

regions where the assumption of stationarity is valid, and apply the given technique in the

region. We then recombine the sub-regions into the final model. Figure 1.8 shows the result

of defining the model space into the four different regions of Figure 1.7 and then applying the

geophysical and geostatistical approach. Note that the image is significantly improved over

the single covariance function approach. Therangedescription for the geostatistical approach

is poor, the images are still of significantly lower frequency than the known model (multiple

realizations, a geophysics equivalent of which is presented in Appendix??, can provide a

higher frequency answer), and we still haven’t done a very good job within the anticline.

Figure 1.8: The result of breaking the problem into four patches and solving them indepen-
dently. Left panel is the result of applying the geophysical method, the right geostatistics.
steer-patch[ER,M]
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STEERING FILTER

If we reexamine the desired velocity function it is apparent that the covariance function varies

within at least two of the four patches (we can also see this in the covariance function of patch

2 and 4 of Figure 1.7). Therefore, it follows that we should get a better image by making

smaller and smaller patches. Crawley (1998) showed that this is true when solving a data

interpolation problem. Unfortunately, we can only make the patch size so small before we

can’t generate sufficient statistics to find the PEF or solve the kriging equations. In addition,

the geophysical solution relies on having a field with the same statistical properties as the

model, this is often not the case. Often what we have is what geostatisticians refer to as ‘soft

data’. Soft data hasgenerallythe same properties of the variable of interest but it is often in

incompatible form, a classic example of this is tying well measurements to flow simulation

results. Geostatistics is generally better suited for combining mixed and limited data. Kriging

requires us to provide only a variogram for each sub-zone. On the other hand, the geostatistical

approach is not well suited for fitting into an iterative optimization problem. Kriging wants the

physics of the problem to be describable by a known function that would then form the basis

for a space varying mean for the kriging problem (Isaaks and Srivastava, 1989). For problems

like tomography this is an unacceptable requirement.

In geophysics there have been attempts to combine different information sources (Stork,

1994),but with limited success. Generally, the inversion problems are too large to use classical

hard constraint mechanisms (Polak, 1997). What we need is a method to construct a space-

varying filter that does a good job describing the model covariance, but can be obtained from

limited and disparate information sources.

If we look at regions two and four in Figure 1.7 we can see that when the stationary

assumption is valid the covariance matrix is fairly simple. We have a primary trend oriented

along the dip of the velocity field that slowly dies out and a ringing effect due to the sinusoidal

nature of the model. We would like to come up with a way to emulate the primary trend of the

covariance matrix through minimal information.

To do this it is important to remember that the regularization operator should have the

inverse spectrum of the covariance matrix. Therefore if the covariance function is primarily
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a dipping event, the regularization operator should be destroying that dip. Claerbout (1990;

1992a) showed how to estimate the primary dip in a region and how to construct a filter that

could destroy that dip. These small filters, which I refer to asdip penalty filters, can be as

simple as a two or three point filter, Figure 1.9. A dip penalty filter consists of a fixed ‘1’

and one or more coefficients in the next column. The location of the filter coefficients in

the second column determines the dip that the filter will destroy. Figure 1.10 is the inverse

impulse response of Figure 1.9. Note how the general orientation of the impulse response

is approximately the same as the covariance function below the lower unconformity, but the

anisotropyandrangeare not correct. In the next section I will discuss how we can also control

these parameters with dip penalty filters.

Figure 1.9: A dip penalty filter ori-
ented approximately 22.5 degrees.
steer-small-filter[NR] 1 -.5

-.5

Figure 1.10: The result of applying
1

AA ′ whereA is the filter in Figure 1.9.
steer-small-response[ER]
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Constructing a filter

When building a steering filter, we want to create a filter that destroys a given slopep. Further,

we would like to control the bandwidth response of filters oriented at different slopes. We

can achieve both these goals by constructing a simple filter. The filter will have a one at the

zero lag location and the rest of its values one column away. For determining the non-zero

lag values imagine constructing a triangle whose center is located at the desired slopep. The

width w of the triangle determines the size of the filter (only coefficients within the triangle

will be used) and the filter’s level ofanisotropy. The height of the filtera determines therange

over which the filter will operate. We can express the values of the filter by,

f (x) = −a

(
w
2 −|x|− p

)
w
2

∑
lag f (x)

, (1.8)

wherex is the vertical distance away from the zero lag coefficient.

For example, let’s return to the missing data problem. If we limit thea priori information to

the assumption that velocity follows structure and we have some guesses at reflector position,

we can use this information to build a complex operator (which I will refer to as asteering

filter) composed of dip penalty filters. For this problem we will assume that we have the

location of four reflectors, one above the top unconformity, two between the unconformities

and one below the lower unconformity (left-panel of Figure 1.11). If we interpolate these dips

to the entire model space we have all we need to construct a steering filter operator. If we

use this operator as the regularizer we get Figure 1.12 as the interpolation result. The steering

filter did a significantly better job than the patching approach. With more information about

the model (more reflectors, an idea on the level ofanisotropyin different portions of the model,

etc.) we could do even better by using some of the other adjustable parameters available when

constructing the steering filter operator.

The three adjustable parameters, possibly different at every model point, in the filter con-

struction can seem daunting but is what enables almost any covariance function to be described

by steering filters. In certain regions of the model you might feel that that covariance function

is much more isotropic. In these regions you could consider making your triangle bigger to
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Figure 1.11: Left panel are four reflectors chosen to represent thea priori information. The
right panel is interpolated slope calculated from the reflectors that will form the basis of the
dip penalty filter. steer-qdome-refs[ER]

Figure 1.12: The result of using
the steering filter operator as regu-
larizer to the missing data problem.
steer-qdome-reg-cont[ER,M]
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smooth your filter coefficients over a wider anglerange, while keeping it small in areas where

the covariance is much moreanisotropic. The sum of the non-zero lag coefficients opens up

another intriguing freedom. As Figure 1.14 shows, when the sum of the non-zero lag coeffi-

cients gets close to−1, the area over which the smoother operates increases greatly. This is

similar to increasing theε value over only a portion of your model space. This enables steering

filters to handle a model space where therangedifference is variable. The final parameter we

can vary, p, controls the angle at which we wish to smooth (Figure 1.15). Note how imposing a

triangle has helped, but not completely eliminated, the variance in angular bandwidth response

of the filter (Figure 1.13).

Figure 1.13: The impulse response of the smoothing filter as function of the triangle base.
Note the wider the base, the less precise the dip smoothing.steer-width [ER,M]

REGULARIZING VS. PRECONDITIONING

An important consideration in many geophysical problems, including tomography, is speed

of convergence. Tomography, even ray based, is computationally intensive so it is important

to minimize the number of steps it takes to get to a reasonable solution. One of the reasons
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Figure 1.14: The impulse response of the smoothing filter as the sum of the non-zero lag
coefficients get closer too 1.steer-distance[ER,M]

for slow convergence is that the regularization operators, including steering filters, are small

in size. As a result the condition number of the matrix we are attempting to invert is large.

A classic solution is to reformulate the regularized inversion problem into a preconditioned

problem in terms of some new variablep (Polak, 1997) and used in tomography by Harlan

(1995). The goal is to replace the regularization operatorA with a preconditioning operatorB

that smooths long distances with each iteration. Any smoother could be an effective precondi-

tioning operator but the ideal choice forB would beA−1, because ifB = A−1, the regularized

fitting goals (1.1) and (1.2) would be equivalent to the new preconditioned fitting goals (Fomel

et al., 1997),

d ≈ LA −1p (1.9)

0 ≈ Am = AA−1p = Ip .

The speed up is due not only to the preconditioner spreading information long distances with

every iteration but also to the regularization equation now being the identity matrix. The



18 CHAPTER 1. SMOOTHING ALONG GEOLOGIC DIP

Figure 1.15: The impulse response as we vary angle. Note how the bandwidth response
varies slightly with angle. Note the helix wrap-around in the top-left and bottom-right plots.
steer-angle[ER,M]
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identity matrix is its own inverse therefore reducing the condition number of the matrix we are

trying to invert.

Helix transform

The problem with this approach is that the regularization operator is multi-dimensional. In-

verting the operator requires a trick that has only been recently been used in geophysics (Claer-

bout, 1998b). Given a multi-dimensional filter, such as Figure 1.9, you first map it onto the

coordinate space of the data (panela of Figure 1.16). Then imagine wrapping the data around

a cylinder with the end of column one connected the beginning of column two. Finally, un-

wind the data into a single string of numbers and you have converted your multi-dimensional

filter into a 1-D filter! If this new, one-dimensional filter is causal and minimum phase, which

steering filters are, you can apply the inverse of the filter cheaply through polynomial division

(Claerbout, 1976).

d

a b c

Figure 1.16: Filtering on a helix. The same filter coefficients overlay the same data values if
the 2-D coils are unwound into 1-D strips. This figure was taken from Fomel and Claerbout
(1997). steer-helix [NR]

With the helix we can now solve the missing data problem that took us 40 iterations as a
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Figure 1.17: The interpolation result
after six iterations using the precondi-
tioned formulation (1.10) of the prob-
lem. steer-qdome-prec-cont[ER,M]

regularized problem, Figure 1.12, in six iterations at the same cost per iteration with the same

quality result.

REGULARIZING TOMOGRAPHY

Finding smoothing directions

To build the steering filter operator we need a dip field, the range, and the level of anisotropy

throughout the model. In many cases it is important to have all three of these parameters vary

spatially. For this simple example, we are going to assign a constantrangeandanisotropyto

the entire model. We will use the model introduced in chapter?? (Figure??). For the dip field

estimate we will assume that velocity follows dip and use the position in which the reflectors

image at zero ray parameter. Figure 1.18 shows the dip directions based on the migrated

reflector positions using the initial velocity estimate.

In depth the initial reflection positions are, of course, in error, so the dip field estimate is

also flawed. Figure 1.19 shows the initial, correct dip field, and the error in the estimate. In

the tau domain, where reflector positions are less effected by our velocity estimate, the dip
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Figure 1.18: Steering filter directions
as a function of geologic dip. The
bold, solid lines are estimated reflec-
tor positions (taken from the initial
migration), the remaining lines rep-
resent dip bars estimated by interpo-
lating the dips between the reflectors.
steer-dir [NR]

field estimate is better, and the steering filters (and therefore the characterization of the model

covariance matrix) are more accurate (Figure 1.20).

Figure 1.19: Left panel is the initial dip directions in depth. The center panel is the correct dip
field generated from the known reflector positions. The right panel is the difference between
the correct dip field and the estimated dip field. In each case the dip field is calculated by in-
terpolating between the reflector above and below the given point. Below the bottom reflector
dips are simply continued. The large error in the lower portion of the difference panel is due
to the difference between the estimate, a bowing up of the bottom two reflectors, and their true
geometry. steer-dips-z[ER,M]
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Figure 1.20: Left panel is the estimated dip field in the tau domain. The center panel is the
correct dip field in the tau domain. The right panel is the initial error in the dip field estimate.
Note that the dip estimate is significantly more accurate in the tau domain compared to the
depth domain (Figure 1.19).steer-tau-dips[ER,M]

Fitting goals

Finally, we need to set up the tomography fitting goals in a preconditioned form. If we follow

the same procedure as we did for the missing data problem, we would first add the regulariza-

tion goal to the tomography problem:

1t ≈
(
Tτ ,ref −Tτ ,ray

)
1s

0 ≈ εA1s, (1.10)

where (A) is the steering filter operator.

However, these fitting goals don’t accurately describe what we really want. The steering

filters are based on the desired slowness rather than change of slowness. With this fact in

mind, we can rewrite the model styling goal as

0 ≈ εA (s0 +1s) , (1.11)

or alternately as

−εAs0 ≈ εA1s. (1.12)
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Here we see the advantage of the helix. Without having the exact inverse ofA as our precon-

ditioner we would not be able to do the same substitution. The left hand side of the model

styling goal is not equal to zero but we can still do the same preconditioning substitution:

1t ≈
(
Tτ ,ref −Tτ ,ray

)
A−1p

−εAs0 ≈ εIp . (1.13)

SYNTHETIC COMPARISONS

In this chapter I introduced the concept of approximating the covariance matrix through a non-

stationary steering filter. When we add in the tau-versus-depth tomography of Chapter?? we

have four possible tomography schemes to compare. The four combinations I will refer to

using the following shorthand:

depth-laplacian - Tomography in depth, smoothing the slowness field (compared to the change

in slowness smoothing of Chapter??) with an isotropic smoother.

tau-laplacian - Tomography in the tau domain, smoothing slowness with an isotropic smoother.

depth-steering - Tomography in the depth domain, using steering filter smoothing.

tau-steering - Tomography in the tau domain, using steering filter smoothing.

For the comparison I will use the same data and initial model as used Chapter??. I will

show the resulting velocity model and migration after one and after two non-linear iterations

of each tomography method.

First iteration

Figure 1.23 shows the velocity model after one non-linear iteration of all four methods. Smooth-

ing the slowness (depth-laplacianandtau-laplacian) rather than the change in slowness ( Fig-

ure?? of Chapter??) creates a more reasonable velocity model. This is most apparent when
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looking at the low velocity layer. When smoothing the slowness we have added significantly

more energy into the low velocity layer within the anticline structure. In addition we do not

see the velocity reversal below the center of the anticline that we saw when smoothing the

change in slowness. The resulting migration images, Figures 1.21 and 1.22, do not show sim-

ilar improvement (when compared to Figures?? and??). In this case we have been hurt by

our choice of regularization operator. Our regularization operator will tend to create Gaussian

blobs. The change in slowness that we need to introduce to our model is more accurately

described by a Gaussian shape than the velocity is.

Figure 1.21: The migration result after one iteration ofdepth-laplacian steer-res.vel1.lapz
[ER,M]

If we replace the isotropic regularizer with a steering filter the results improve significantly.

In the depth-steeringand tau-steeringcase the anticline structure is very evident. The low

velocity layer also does a good job following the anticline. The migration results Figures 1.24

and 1.25 are both impressive. Both results have done a good job flattening the horizontal

and dipping reflectors and show little residual moveout in the CRP gathers. The tau result

does a better job correctly positioning the reflectors. Here we clearly see the advantage of the

tau domain’s ability to uncouple the focusing and mapping. In addition to reducing the map

migration term in the tomography operator, we are able to correctly estimate the dip field for
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Figure 1.22: The migration result after one iteration oftau-laplacian steer-res.vel1.tau
[ER,M]

the steering field operator.
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Figure 1.23: The velocity after one iteration using the four different methods. Top-left is
depth-laplacian; top-right istau-laplacian; bottom-leftdepth-steering; and bottom-righttau-
steering. steer-anti-vel1[ER,M]
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Figure 1.24: The migration result after one iteration ofdepth-steeringsteer-res.vel1.steerz
[ER,M]

Figure 1.25: The migration result after one iteration oftau-steering steer-res.vel1.steer
[ER,M]
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