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Abstract

Theory predicts that time and space domain prediction-error filters (PEFs) may be used to

interpolate aliased signals. I explore the utility of the theory, applying PEF-based interpolation

to aliased seismic field data, to dealias it without lowpass filtering by inserting new traces

between those originally recorded. But before theoretical potential is realized on 3-D field

data, some practical aspects must be addressed.

Most importantly, while PEF theory assumes stationarity, seismic data are not stationary.

We can divide the data into assumed-stationary patches, as is often done in other interpolation

algorithms. We interpolate with PEFs in patches, and get near-perfect results in those parts of

the data where events are mostly local plane waves, lying along straight lines. However, we

find that the results are unimpressive where the data are noticeably curved. As an alternative

to assumed-stationary patches, I calculate PEFs everywhere in the data, and force filters which

are calculated at adjacent coordinates in data space to be similar to each other. The result is a

set of smoothly-varying PEFs, which we call adaptive or nonstationary. The coefficients of the

adaptive PEFs constitute a large model space. Using SEP’s helical coordinate, we precondition

the filter calculation problem so that it converges in manageable time.

To address the difficult problem of curved events not fitting the plane wave model, we can

control the degree of smoothness in the filters as a function of direction in data coordinates. To

get statistically robust filter estimates, we want to maximize the area in data space over which

we estimate a filter, while still approximately honoring stationarity. The local dip spectrum

on a CMP gather is nearly constant in a region which is elongated in the radial direction, so

I estimate PEFs that are smooth along radial lines but which may vary quickly with radial
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angle. In principle that addresses the curvature issue, and I find it performs well in practice

on strongly curved data, noisy data, and data with somewhat irregular acquisition geometry or

statics.
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Preface

All of the figures in this thesis are marked with one of the three labels: [ER], [CR], and [NR].

These labels define to what degree the figure is reproducible from the data directory, source

code and parameter files provided on the web version of this thesis1.

ER denotes Easily Reproducible. The author claims that you can reproduce such a fig-

ure from the programs, parameters, and data included in the electronic document. We

assume you have a UNIX workstation with Fortran90, X-Window system, and SEP’s

freely distributed software at your disposal. Before the publication of the electronic

document, someone other than the author tests the author’s claim by destroying and

rebuilding all ER figures.

CR denotes Conditional Reproducibility. The author certifies that the commands are in

place to reproduce the figure if certain resources are available. To find out what the

required resources are, you can inspect a corresponding warning file in the document’s

result directory. For example, you might need a large or proprietary data set. You may

also need a super computer, or you might simply need a large amount of time on a

workstation.

NR denotes Non-Reproducible. This class of figure is considered non-reproducible. Figures

in this class are scans and artists’ drawings. Outputs of interactive processing are labeled

NR.

1http://sepwww.stanford.edu/public/docs/sep101
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Many of the figures in Chapter 2 do not lend themselves easily to automatic reproduction,

because several of the standard processing steps, like NMO, Radon, and stack, were done with

the commercial package ProMAX, which favors pointing and clicking. These figures are all

marked [NR].

Figures in Chapter 3 and 4 are mostly marked [ER]. The software requires a Fortran90

compiler. While the figures generally take less than a half hour to generate on a single pro-

cessor, they tend to consume a large amount of memory, so that reproducing them on a small

workstation may be impractical. Some of the figures in Chapter 4 compare results of time-

domain interpolation [ER] and ProMAX’s FX interpolation [NR]. These are marked [ER], but

only the time-domain panels actually reproduce themselves.
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Chapter 1

Introduction

Reflection seismic data are nearly always adequately sampled in time. Four millisecond sam-

pling is typical, giving a temporal Nyquist of 125 Hz, more than adequate since the signal tends

to die out somewhere in the 60-100 Hz range. In contrast, seismic data is often inadequately

sampled along various spatial axes. If there is more signal, improving temporal sampling

is easy. Improving spatial sampling is expensive, because it requires more equipment, time

and/or manpower in the field. Seismic acquisition is expensive. Moreover, reflection surveys

tend to be designed with the goal of maximizing poststack or image resolution for a fixed cost

(fixed cost≈ fixed number of traces), at the expense of fold. This represents the choice to

spend money on well-sampled geology, in order to get more precise subsurface information,

rather than on a well-sampled wavefield which would be easier to process.

All of the multichannel steps in seismic data processing depend to some degree on ade-

quately sampled data. Inputting spatially aliased data can produce results with various sorts

of artifacts and poor spatial resolution. Marfurt et al. (1996) give examples of artifacts that

appear in Radon transforms of insufficiently sampled data. Spitz (1991) shows differences

between migration results on well sampled and poorly sampled data.
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2 CHAPTER 1. INTRODUCTION

INTERPOLATION AND ALIASING IN 3-D MARINE

Seismic data is expensive to acquire, and spatial sampling is an important limiting factor in

processing. Taken together, that means it should be easy to find examples where it is useful to

make more data, without going to the expense of actually recording it. It turns out that in most

3-D marine acquisition (which includes most of the seismic data recorded in recent years),

there is systematic undersampling along a couple of different axes. The inline shot axis is one

that tends to be undersampled. The resulting aliasing can have a significant impact on multiple

suppression in particular.

Multiple suppression is a motivating example of a multichannel process that can be severely

hindered by data aliasing. Interpolating data does not, in and of itself, do anything to re-

move multiples, but it can significantly improve the results of various multiple suppression

algorithms. Radon demultiple, for example, is affected in a fairly intuitive fashion by poor

sampling in offset. Where data are aliased, a single reflection event can appear to have more

than one slope. Radon demultiple algorithms (and other moveout discrimination methods) are

affected because at some level they amount to dip filtering the data. An aliased multiple event

will have components at the expected dip value and at various other dips as well, making it

difficult to remove. Figures 1.1 and 1.2 show well-sampled and poorly-sampled CMP gath-

ers, and hyperbolic Radon transforms. Figure 1.1 shows a well-sampled gather and the same

gather with one third the sampling in offset. Figure 1.2 shows hyperbolic Radon transforms

of the gathers in Figure 1.1. The horizontal axis is given as milliseconds of moveout at 3000

meters of offset, instead of slowness. The well-sampled gather transforms fairly cleanly; there

is not significant energy visible in areas of the transform that do not correspond to physically

reasonable times and velocities. The subsampled gather produces a transform that does have

the same trend, but also has artifact energy spread over most of the transform.

Radon multiple suppression (and multiple suppression in general) is often used as motiva-

tion in interpolation papers, because data aliasing occurs systematically in marine acquisition.

Marine acquisition commonly looks like Figure 1.3, where a boat tows two airgun sources

and three (or more) receiver cables. The number of receiver cables can be significantly larger

than three, with the number of midpoints increasing proportionately, but with the pattern of
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Figure 1.1: Unaliased, well-sampled data and aliased, poorly sampled data, before hyperbolic
Radon transform. These gathers are Radon transformed to make the panels in Figure 1.2.
int-radExpre[NR]



4 CHAPTER 1. INTRODUCTION

Figure 1.2: Unaliased and aliased data, after hyperbolic Radon transform. The horizontal axis
is in milliseconds of moveout at 3000 meters offset, instead of slowness. The unaliased data
transforms cleanly (left panel). The Radon transform of the aliased data (right panel) shows
the same main trend as that of the unaliased data, but also has artifact energy spread over most
of the transform.int-radExpost[NR]
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midpoints staying the same. At each shot location, one or the other of the two sources fires,

and the two alternate in what we call a “flip/flop” mode. Shot spacing for the pair considered

together is normally equal to the receiver spacing, so that for a single inline the shot spac-

ing is double the receiver spacing. The sources are positioned in such a way that they fire

into interleaved sets of midpoints. This means there is an increase in the number of crossline

midpoints, which is good for lateral resolution of the subsurface, but it also means that the

fold decreases. Specifically, a given midpoint only gets a trace from every second shot, so

the common-midpoint (CMP) fold is cut in half and effective source and receiver spacing is

doubled.

In the older single source acquisition, CMP fold was already half the number of receivers,

spread over the same offset range, meaning that unaliased shot gathers could be sorted into

aliased CMP gathers. This is the so-called “sampling paradox” (Vermeer, 1990). The ad-

ditional halving due to the “flip/flop” acquisition means that the trace spacing in a common

midpoint gather is four times the trace spacing in a common shot gather. Figures 1.4 and 1.5

illustrate the sampling for CMP gathers in a single inline in a “flip/flop” marine survey and in

a survey with a single source. With a single source, shot spacing and receiver spacing are the

same, and offset spacing within a CMP gather is double that. With two sources, shot spacing

is twice the receiver spacing, and offset spacing within a CMP gather is quadruple the receiver

spacing. Jakubowicz (1994) gives an alternate explanation in terms of spatial frequencies.

Shot gathers are antialiased in the inline direction by receiver arrays in the streamer cables,

but it is not surprising for seismic events to be aliased in a CMP gather.

Other multiple removal schemes depend equally on data sampling. Seafloor-related mul-

tiples can be modeled from the recorded data by upward continuation (Berryhill and Kim,

1986). This process models first order multiples from primaries, second order multiples from

first order multiples, and so on. The recorded data minus the modeled multiples yields the de-

sired primaries. Upward continuation is a migration-type operator, and not surprisingly creates

artifacts if the data are not well sampled. The artifacts make it harder to match the modeled

multiples to the recorded data. Another method for modeling multiples from primaries is the

surface related multiple elimination (SRME) method of Delft (Berkhout and Verschuur, 1997;

Verschuur and Berkhout, 1997). In this method, the recorded traces function both as input data
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25m 100m

1 2 3 4 5 6

Figure 1.3: Seismic acquisition boat towing two sources and three streamers. The number
of streamers (and similarly the number of midpoints) may be much larger, but the pattern of
midpoints stays the same.int-boat [NR]

Sh
ot

Receiver

CM
P gather

Figure 1.4: Stacking diagram for marine survey with a single source.int-stackingchart1[NR]
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Figure 1.5: Stacking diagram for marine survey with two sources.int-stackingchart2[NR]

and as a convolutional operator, both data aliasing and operator aliasing result from insufficient

sampling. These two methods rely on reciprocity as well. Marine acquisition is often miss-

ing near source receivers, and sources are offset in the crossline direction from the receivers,

so it is impossible to construct reciprocal gathers from the recorded data. This introduces an

additional sort of missing data problem.

The crossline receiver axis is also poorly sampled, as suggested by Figure 1.3. The phys-

ical problems of towing something through the water make it difficult to hope for a dense

crossline arrangement of receivers. Modern boats may have a dozen or more streamers, but

these extra crossline receivers tend to be used to widen the aperture rather than to refine the

sampling. The scarcity of crossline receiver sampling makes various kinds of potentially in-

teresting operations difficult. True 3-D multiple suppression and 3-D full wave equation mi-

gration would both (eventually) want better crossline sampling.
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Regularity versus predictability

Multiple suppression provides a good context for interpolating seismic data, because the prob-

lems related to sampling are well known and the data usually have a very regular acquisition

geometry and high signal-to-noise ratio. While cable feathering makes the data irregular in

physical (x, y) coordinates, it tends to be perfectly regular in (s,g).

The shape of a streamer, while not straight, tends to change slowly from one shot to the

next, since the currents tend to vary with tidal cycle at the fastest. With modern GPS and

navigation controls, the source locations generally follow lines which vary quite slowly in

relation to the shot spacing. This regularity makes marine data suitable for a wide range of

algorithms. In particular, filtering is sensible because the shot and channel regularity and

the slowly changing shapes of streamer cables make it easy to put the data on a meaningful

grid. Figure 1.6 shows the layout of receivers during numerous shots. The figure is vertically

exaggerated to show the irregularities in the geometry. The streamer is not straight, so the data

are not exactly regular in terms of shot and receiver surface locations. However, the data are

regular in shot and receiver number coordinates, and because the streamer wiggles in a smooth

fashion, they should also be predictable.

Land data often do not have this property. Receiver and source positions can make sharp

turns, particularly when acquisition is constrained by permits and terrain. Adjacent receiver

lines can have different numbers of receivers. The data are typically much noisier than marine

data. Nonetheless, land data presents an interesting interpolation challenge because it is more

difficult and expensive to acquire than marine data.

WHAT TO DO WITH ALIASED DATA

There are a couple of things to do about aliasing. In the 1-D case, the choices are bandpass fil-

ter the data before digitizing it, or live with it. With more dimensions come more possibilities,

in particular the option to create more data. Most multichannel operators have some notion of

operator antialiasing, which is essentially a bandpass on the impulse response of the operator,

intelligently applied so that the maximum frequency is only as low as it has to be, changing
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Figure 1.6: Receiver positions for a number of shots from a 3-D survey. Vertical exaggera-
tion is around 50:1. The ship and the towed cables do not go precisely straight, but deviate
in a smooth manner. The data are not precisely regular in shot and receiver location coordi-
nates, but they are predictable, and they are regular in shot and receiver number coordinates.
int-recs2 [NR]
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with the dip of the operator.

Data aliasing can also, of course, be dealt with by bandpassing, but it would be foolish

to throw away the useful information contained in the high frequencies. An alternative is to

make more data. Aliasing in seismic data can almost always be thought of as not having traces

spaced closely enough, along some axis. Interleaving a set of appropriately synthesized traces

removes the problem without giving up the high frequencies. Naively interleaving traces (for

instance by linear interpolation or by FFT and zero pad), will produce more data but with

incorrect dips.

A simple example is shown in Figure 1.7. An almost-aliased diagonal event and its Fourier

transform appear in Figure 1.7a. When the data are reduced to every second trace (1.7b), the

data are obviously aliased, such that the dipping event appears to be a series of horizontal

events. The Fourier transform exhibits the expected wraparound. Bandpassing removes the

aliasing wraparound, as shown in Figure 1.7c, but is not an attractive option because half

the information is gone. Linear interpolation, shown in Figure 1.7d, extrapolates both the

desired energy and the aliases in the frequency domain, so that the resampled data have the

wrong dip. Zero padding in the frequency domain gives a similarly bad result. This is an

excellent method when the data are not aliased. When the data are aliased, it does not really

accomplish anything, as shown in Figure 1.7e. Restoring the data so that it looks like Figure

1.7a requires “unwrapping” the aliased energy visible in the second row, and not just zeroing

or extrapolating it.

A number of algorithms exist that attempt to do exactly that, with varying degrees of

success, expense, and robustness. The most well known is the (f ,x) interpolation method of

Spitz (1991; 1990). At each frequency, a spatial prediction filter is calculated from the known

data, absorbing a set of constant linear dips to represent the data. A given filter is then used as

an interpolation operator at double the frequency, where the spectrum it has captured from the

known data corresponds to the same linear slopes at half the trace spacing.

A similar method is described by Claerbout (Claerbout, 1992b; Claerbout and Nichols,

1991) , who estimates a PEF in the (t ,x) domain and uses it as the interpolation operator.

Where the frequencies are scaled in Spitz’s (f ,x) method, here Claerbout scales the physical
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Figure 1.7: How not to interpolate aliased data.int-introex [ER]
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axes of the PEF. The lag of a filter coefficient is scaled equally along all axes in order to

represent the same slope at different trace spacings.

Basic to both of these methods is the assumption that seismic data are made up of linear

events with constant slopes. This is clearly untrue for any large amount of data. Changes

in structure, velocity, offset and time cause changes in the slope of seismic events. To get

around this problem, we typically divide the data into small regions (from here on referred to

as patches) where we assume that the data do have constant slopes. We estimate filters and

interpolate traces in each patch. At the end we reassemble the patches, usually with some

reasonable amount of overlapping, to make a full dataset.

Another group of methods are based on local Radon transforms. These methods make

a similar assumption to the linear event assumption that the filtering methods above make,

though whether the events are really assumed to be linear, parabolic, hyperbolic or whatever,

depends on the particular Radon transform being used. In this case the Radon transform is

the estimate of local dip, and the modeling adjoint of the transform stacking operator is the

interpolator. Cabrera (1984) and Hugonnet (1997) describe variations on this theme. Novotny

(1990) instead picks the strongest dip in the transform and linearly interpolates along it.

All the methods listed above are two-step methods, where the first step is to gather local

information from regions of the data, and the second step is to use the information to synthe-

size new data with similar properties. Still another group of methods exist, which are based

on migration-like operators. For example, Ronen (1987) applies DMO and inverse DMO iter-

atively to regrid spatially aliased data, and Chemingui (1996) uses AMO.

Dealiasing versus antialiasing

It is apparent from the number of interpolation algorithms that people have invented that alias-

ing is an old problem, and so naturally many previous authors have used terms like “dealias”

and “antialias,” with slightly different connotations. In this thesis, I follow the examples of

numerous SEP alumni (and others), and use the term “antialias” to refer to methods which re-

move aliasing without changing sampling rates, by lowpass filtering the data in some manner

(Claerbout, 1992a; Lumley et al., 1994). I use the term “dealias” to refer to methods which
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maintain frequency and change sampling, by inventing some hypothetical data to represent or

supplement the original (Manin and Spitz, 1995; Ronen, 1990; Nichols, 1992). This seems as

good a convention as any, though counter examples can be turned up (Beasley and Mobley,

1998). Finally, where data are said to be unaliased, I simply mean that in their original state,

without any particular sort of manipulation, the data are not aliased.

THESIS OVERVIEW

Interpolation with locally stationary PEFs

In Chapter 2, I describe how a PEF can be used to interpolate stationary, aliased data in two

steps of least squares, similar to Claerbout (1992b). The first step calculates a PEF from the

recorded data. The PEF “learns” the dips in the data; its spectrum tends towards the inverse

of the data spectrum (in the limit as the number of filter coefficients approaches the number of

data samples). The data spectrum is aliased, and so the PEF spectrum is as well. But taking

advantage of the scale invariant properties of the PEF allows us to easily “unwrap” its aliased

spectrum. The PEF then has a dealiased representation of the data spectrum.

In the second step of the interpolation, a closely related problem is solved, except that the

filter is known and the missing data is unknown. By “missing” we mean all the hypothetical

data that was not included in the acquisition geometry. Typically this translates into every

other trace, when the offset sampling interval or the source sampling interval is being halved

in the interpolation. Whereas the PEF acquired the inverse of the aliased data spectrum in the

first step, the data winds up with the inverse of the dealiased PEF spectrum in the second step.

The result is a version of the original data, dealised by virtue of having double (or some other

integer multiple) the spatial sampling rate of the original.

Of course, seismic data do not tend to be stationary, so the data is divided into small

patches, and assumed to be stationary within a patch. Each patch is a separate, independent

problem.



14 CHAPTER 1. INTRODUCTION

Interpolation with nonstationary PEFs

In Chapter 3, I present a new method which attempts to take advantage of the fact that events

in prestack seismic data do not tend to have dips that are distibuted independently over any

particularly-sized region. Rather, events tend to be large curving things, with dips that change

gradually as you observe them at different offsets and times.

Instead of dividing the data into assumed-stationary patches, I assume the data have gradu-

ally varying slopes, and formulate the problem so that PEFs calculated from adjacent portions

of the data look similar to each other. I estimate a PEF for every data sample, or on very small

patches, so that an individual patch is too small to determine all the coefficients of a single PEF.

The problem becomes underdetermined. To control the null space, I use a smoothing operator

as a preconditioner to encourage a smoothly-varying batch of PEFs. The smoothly-varying

PEFs suit the smoothly-varying dip spectrum of the data.

I estimate a large number of PEFs, so the model space is enormous. Nonetheless, the filter

estimation step converges quickly, in about ten iterations. In the tests I have run, it takes longer

to estimate a smaller number of PEFs in independent patches. The cost of convolutions of the

PEFs across the data do not depend on the number of filters, but only on their size, so the

convolution operator is not any more expensive for many filters than for a single filter. The

preconditioning operator is a smoother, which does add some cost. However, the cost of the

smoother is small, because it is implemented as division (deconvolution) by a tiny three point

roughening filter, rather than convolution with a larger smoothing filter. Using Claerbout’s

helical coordinate (Claerbout, 1998) allows a tiny operator to have a large, multidimensional

impulse response. The large set of smoothly-varying PEFs produce more accurate interpola-

tion results than other methods I tested, particularly in data with complicated moveouts.

Noisy data and land data

The examples in this thesis could be done in the (f ,x) domain, using about the same theory,

but somewhat faster. Aside from simply being cavalier about computational cost, there are

some arguments in favor of the time domain. In particular, Abma (1995) argues that time
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domain filters are more resistant to noise. Abma develops the point that filters calculated in

the (ω,x) domain are effectively long in the time domain, because there is a separate filter for

each frequency. The extra degrees of freedom make the frequency domain filters more likely

to predict the noise. This leads to interpolation of ostensibly incoherent noise.

As noise makes data harder to predict, and thus interpolate, so does irregular acquisition.

In the marine case, motivation to interpolate comes largely from the multiple suppression

problem. In the land case, the expense and difficulty of data acquisition provides a more

general motivation. However, the land problem is also harder. While marine geometry tends to

be very regular, land data often has jagged, discontinuous arrangements of shots and receivers,

where the survey is forced to work around and over surface features. Land data also tends to

be much noisier than marine data. Slow variations in geometry and relative lack of noise mean

that a given trace or shot gather in a marine survey is similar to (and thus predictable from) its

neighboring shot gathers. Land data is less predictable, so it is harder to interpolate.

In Chapter 4, I discuss the effects of noise and erratic geometry on the interpolation

method. I show some land data interpolation results, and compare (f ,x) and (t ,x) interpo-

lation results on noisy data.
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Chapter 2

Interpolation with locally stationary PEFs

In this chapter I show how to interpolate seismic data using time and space domain prediction

error filters. I describe the scale invariant properties of PEFs and describe the first of two

methods for dealing with nonstationarity in the data. The first method is patching, dividing

the data into small regions where stationarity can be reasonably assumed. I use patching

in a synthetic data example where data aliasing degrades the results of Radon demultiple.

Interpolating the data dealiases it, and improves the demultiple results. The interpolation is

successful in the sense that it improves the result, but the accuracy of the interpolation is less

than perfect, especially in areas of complicated moveout, where the stationarity assumption

does not hold. With that in mind, I broach the second method of dealing with nonstationarity,

a new smoothing-based method, which is described in detail in the third chapter.

PREDICTION ERROR FILTERS

To paraphrase Claerbout (1992b), one way to synthesize new seismic traces is to ensure that,

after specified filtering, they have minimum power. Filtering is spectral multiplication, so the

specified filtering is a way of prescribing a spectrum for the new traces. You are free to choose

a spectrum to prescribe. A sensible choice is the spectrum of the recorded data, which can be

captured, in a sense, by finding the data’s PEF.

17
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PEF spectrum equals the inverse of the data spectrum

PEFs have the important property that they whiten the data they are designed on. Since time-

domain convolution is frequency-domain multiplication, this implies that the PEF has a spec-

trum which is inverse of the input data. This property of PEFs is what makes the interpolation

scheme described in this thesis function. There are various ways to prove the whitening prop-

erty of PEFs; here I follow Jain (1989) and Leon-Garcia (1994).

The minimum mean square error prediction of thenth value in a stationary zero-mean data

seriesu(n), based on the previousp data values, is

û(n) =

p∑
k=1

a(k)u(n−k) (2.1)

The coefficientsa(n) make up the bulk of the prediction error filter foru(n), which is defined

in the Z-transform domain by

Ap(z) = 1−

p∑
n=1

a(n)z−n (2.2)

The coefficientsa(n) generate a prediction of the data. Convolving the entire prediction

error filter (2.2) on the input yields the prediction errorε(n), which is then just the difference

between the estimatêu(n) and the known datau(n).

u(n)− û(n) = ε(n) (2.3)

The filter coefficientsa(n) are determined from the input datau(n) by minimizing the mean

square of the prediction errorε(n).

A fundamental principle from estimation theory says that the minimum mean square pre-

diction error is orthogonal to the known data and to the prediction. It turns out that this implies

the most important property of PEFs, and their utility in finding missing data.

First, to develop the orthogonality condition, we consider the datau(n) and the estimate
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û(n) as random variables. The estimate is the expectation of the true datau(n) based on the

rest of the data, the random sequenceu = (u(1),u(2),u(3), ...), not includingu(n). Taking f (u)

to be any function ofu, and usingE [] to denote expectation, we can write

E
[
û(n) f (u)

]
= E

[
E(u(n)|u) f (u)

]
(2.4)

= E
[
E(u(n) f (u)|u)

]
(2.5)

= E
[
u(n) f (u)

]
(2.6)

Sinceû(m) andu(m) are functions ofu, that implies the orthogonality conditions

E [(u(n)− û(n))u(m)] = E [ε(n)u(m)] = 0, m 6= n (2.7)

and

E [(u(n)− û(n))û(m)] = E [ε(n)û(m)] = 0, m 6= n. (2.8)

With certain provisos, these orthogonality conditions imply that the prediction error is

white:

E [ε(n)ε(m)] = σ 2
ε δ(n−m) (2.9)

whereσ 2
ε is the variance ofε(n).

For proof, replacen with m−k, and

E [ε(m)ε(m−k)] = E ([ε(m)u(m−k)] − [ε(m)û(m−k)]) (2.10)

= E [ε(m)u(m−k)] − E

[
ε(m)

∑
i

a(i )u(n−k− i )

]
(2.11)

The first term on the right side of equation (2.11) is a delta function with amplitude equal
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to the variance of the prediction error, because

E [ε(m)u(m)] = E [ε(m)ε(m)] + E [ε(m)û(m)] (2.12)

= E [ε(m)ε(m)] + E

[
ε(m)

∑
i

a(i )u(m− i )

]
(2.13)

= σ 2
ε , i 6= 0 (2.14)

The second term in the RHS of equation (2.11) is basically the same, but the delta function

appears inside the sum. Rewriting the RHS, equation (2.11) turns into

E [ε(m)ε(m−k)] = σ 2
ε δ(k)−σ 2

ε

∑
i

a(i )δ(k+ i ) (2.15)

If the filter Ap is causal, theni = 1,2,3, ...,p. The sum in the RHS of equation (2.15) is zero,

becausek is an autocorrelation lag, meaningk ≥ 0. This means the prediction error is white:

E [ε(m)ε(m−k)] = σ 2
ε δ(k). (2.16)

If the filter Ap is not causal but hasi = −p, ...,0, ...,p, then the sum does not vanish, and the

prediction error is not white. In this case, usinga(0) = −1 to fit with equation (2.2),

E [ε(m)ε(m−k)] = −σ 2
ε

p∑
i =−p

a(i )δ(k+ i ) (2.17)

The prediction error is the output of the convolution of PEF and data, so if the prediction

error is white, then the PEF spectrum tends to the inverse of the data spectrum. This is the

most important thing about PEFs; they give an estimate of the inverse data spectrum. This is

only true for a causal prediction.

The development above uses one-dimensional data series. In this thesis I deal with predict-

ing missing trace data from other known traces, so two and more dimensions are necessary.

Thinking in helical coordinates (Claerbout, 1998) allows extension to arbitrarily many di-

mensions. Jain (1989) develops the same arguments with more dimensions. Also, Claerbout

(1997) gives alternative whiteness proofs in one dimension and two dimensions, attributed to
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John Burg.

Causality in multiple dimensions

In order for the PEF to contain the inverse of the data spectrum, it has to be causal. The notion

of causality is most obvious when there is a single axis labeled “time,” but it extends readily

enough to two or more dimensions. Your eye scans the page from left to right and top to

bottom; the words previous to the current one are to the left on the same line and everywhere

on the lines above. This gives a sort of two-dimensional causal region. Including all the

words on previous pages gives a sort of three-dimensional causal region. This is somewhat

arbitrary. In some other language the fast and slow axes might be swapped or reversed. The

important thing is that along a line parallel to any axis and going through the current point

(the zero lag, the value 1z0 in equation (2.2)), a causal region lies only to one side of the

current location. Figure 2.1 shows an illustration of a two-dimensional causal region. We can

make a causal prediction of the data value in the square labeled “1” from any or all of the

other shaded squares. The shaded squares are labeled to show the layout of of a PEF with

four adjustable coefficients. The “1” is the value 1z0 in equation (2.2), and thea(n) are the

adjustable coefficients.

Figure 2.2 shows a picture of a 2-D PEF, and Figure 2.3 shows a picture of a 3-D PEF. In

both cases, the dark shaded block holds the 1, and the lighter blocks are the coefficientsa(n)

calculated from the data.

Scale invariance and filling in the missing data

The PEF that minimizes the causal prediction error turns out to have the inverse of the data

spectrum as its spectrum. With such a filter, Claerbout’s statement at the beginning of this

chapter tells how to then fill in the missing traces. However, interpolation is interesting only

when the data are aliased. And when the data are aliased, the data spectrum isnot really

a sensible choice. The data aliasing is expressed in the Fourier domain by the wraparound

artifacts, which need to be unwrapped for the interpolation to be useful. Otherwise, we could
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axis 1

axis 2

1

a(4)

a(3)

a(2)

a(1)

Figure 2.1: A two-dimensional causal region. We can predict the data value in the square
labeled “1” from any or all of the other shaded squares.bp-causal[NR]

Figure 2.2: Form of a 2-D predic-
tion error filter. The shaded box holds
the zero-lag coefficient, with a fixed
value of 1. bp-2dpef [NR]
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axis 1

axis 2
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Figure 2.3: Form of a 3-D predic-
tion error filter. The shaded box holds
the zero-lag coefficient, with a fixed
value of 1. bp-3dpef [NR]

axis 2

axis 3

axis 1

axis 2

do everything instantly in the Fourier domain by zero padding or something similar, and not

bother with filter estimation at all. This complication turns out to illustrate another important

PEF property, scale invariance.

The data that we use to calculate PEFs is incomplete. We can imagine the missing traces

that we want to eventually fill in as being composed of zeroes. We can rearrange the recorded

data and the zeroes in various ways by sorting the data. Continuing with the idea of missing

shots in marine acquisition, we can sort the data into common receiver gathers and form a

checkerboard of recorded and zero traces, as shown in Figure 2.4. We can choose to leave

them as shot gathers, and have the arrangement shown in Figure 2.5.

We do not want those zeroes to influence our filter estimation, so we scale the axes of the

filter. Figure 2.6 shows the PEF from Figure 2.3, but with all its axes scaled by two. Again

the dark box is the fixed 1 and the lighter boxes hold the adjustable coefficients. The empty

spaces between boxes are lags with no coefficients in them. Convolving the filter in Figure 2.3

across either of the data cubes in Figures 2.4 and 2.5 results in predicting zeros from known

data values, or known data values from zeros, depending on the position of the filter in the data

cube. Convolving the filter in Figure 2.6 across the same data cubes results in predicting zeros
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offset receiver

time

offset

time

Figure 2.4: Arrangement of recorded and missing traces in one inline of a dual-source marine
experiment, sorted into common receiver gathers. One shade represents recorded traces and
the other missing traces.bp-traces-crg[NR]

from zeros, or known data from known data only. That is what we want. The PEF should find

the spectrum of just the recorded data.

All the axes are scaled equally. It looks as though we only need to scale the spatial axes.

However, if we only scale the spatial axes, then the dips represented by the original-size filter

(Figure 2.3) will not be the same as the dips represented by the scaled filter (Figure 2.6). We

need to return the filter to its original size in order to fill in the missing traces. As an aside,

scaling the filter halves the temporal Nyquist of the filter. If the input data contain frequencies

above the half-Nyquist, it is important to resample the time axis. This is discussed in more

detail later.

Calculating data values to put in the missing traces is exactly like calculating filter co-

efficients. Minimize the mean square of the prediction errorε, except instead of changing

the filter coefficientsa(n), change the data valuesu(n). Naturally the recorded data should not

change, so change only theu(n) that were not part of the original data set, those corresponding
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offset shot

time

offset

time

Figure 2.5: Arrangement of recorded and missing traces in one inline of a dual-source marine
experiment, sorted into common shot gathers. One shade represents recorded traces and the
other missing traces.bp-traces-csg[NR]

to the zero traces in Figures 2.4 and 2.5.

The filter with scaled axes, shown in Figure 2.6, does not predict missing values from

known ones, so there is no criteria for assigning values to the missing data. In order to move

energy between the known and missing traces, we rescale the axes so that the filter is com-

pressed to its original size, as in Figure 2.3. Happily, the PEF’s wrapped (aliased) spectrum

that is calculated from the aliased data seems to come unwrapped; depending on how aliased

the original data is, the rescaled filter is less aliased or not aliased at all. The PEF coefficients

were calculated so that the PEF’s spectrum was the inverse of the data spectrum. By the same

method, the adjustable data values are calculated to have the inverse of the PEF spectrum,

which is just the original data spectrum again, but with aliasing wrap-around removed. Where

before the filter took on the inverse of the aliased data spectrum, now the data takes on the

inverse of the unaliased filter spectrum.

As an example, Figures 2.7 and 2.8 show a simple diagonal example similar to the one in
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Figure 2.6: A 3-D prediction error
filter with all axes scaled by two.
bp-exp [NR]

receiver

offset

time

receiver

the introduction. Figure 2.7 shows the aliased input data (2.7a), its Fourier transform (2.7b),

the impulse response of the inverse of the axis-scaled PEF calculated from the data (2.7c),

and the Fourier transform of that (2.7d). The axis-scaled PEF whitens the aliased input data,

knocking down the dominant events in the data. Accordingly, the same four strong events are

visible in the spectrum of the input and of the inverse PEF. Oddly enough, the inverse PEF has

some additional events in its spectrum, at high frequencies where the data spectrum is all zero.

The inverse PEF is the estimate of the spectrum of the data, so it seems strange to see energy

where the data spectrum is known to be zero. However, those components of the model (the

PEF) are in null space of the operator (convolution with the data), since multiplying anything

by the zeroes in the data spectrum gives zero.

Figure 2.8 shows the impulse response of the inverse PEF with its axes returned to normal

size (2.8a), the Fourier transform (2.8b), the interpolated data (2.8c), and the interpolated

data’s Fourier transform (2.8d). When the PEF is compressed to normal size, its spectrum

is windowed down to a less-aliased region, which parenthetically happens to get rid of those
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surprising high-frequency events in the PEF. The interpolated data then takes on the spectrum

of the compressed PEF. There is still an obvious alias in this particular PEF’s spectrum, but it

again is outside the band of the data.

Implementation

There are two steps. The first calculates a PEF and the second calculates missing data values.

Both are linear least squares problems, which I solve using conjugate gradients.

The first step we can write

0 ≈ YCa+ r0 (2.18)

wherea is a vector containing the PEF coefficients,C is a filter coefficient selector matrix,

andY denotes convolution with the input data. The coefficient selectorC is like an identity

matrix, with a zero on the diagonal placed to prevent the fixed 1 in the zero lag of the PEF from

changing. Ther0 is a vector that holds the initial value of the residual,Ya0. If the unknown

filter coefficients are given initial values of zero, thenr0 contains a copy of the input data.r0

makes up for the fact that the 1 in the zero lag of the filter is not included in the convolution

(it is knocked out byC).

The second step is almost the same, except we solve for data values rather than filter

coefficients, so knowns and unknowns are reversed. We use the entire filter, not leaving out

the fixed 1, so theC is gone, but we need a different selector matrix, this time to prevent the

originally recorded data from changing. Split the data into known and unknown parts with an

unknown data selector matrixU and a known data selector matrixK . Between the two of them

they select every data sample once:U+K = I . Now to fill in the missing data values, solve

0 ≈ A(U+K )y (2.19)

= AUy +AKy (2.20)

= AUy + r0 (2.21)
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Figure 2.7: Example input, and expanded PEF calculated from the input. Panels show (a)
aliased input data, (b) Fourier transform of input, (c) PEF calculated from input, (c) inverse of
the envelope of the Fourier transform of PEF.bp-diagonalin2[ER]
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Figure 2.8: Example output, and compressed PEF. Panels show (a) compressed PEF, (b) in-
verse of the envelope of the compressed PEF’s Fourier transform, (c) interpolated output, (d)
Fourier transform of output.bp-diagonalout2[ER]
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A now denotes the convolution operator, and the vectory holds the data, with the selector

U preventing any change to the known, originally recorded data values. Ther0 in (2.21)

is calculated just like ther0 in (2.18), except that now the adjustable filter coefficients are

presumably not zero. Where beforer0 wound up holding a copy of the data (assuming the

adjustable filter coefficients start out zero), here it holds the initial prediction errorAKy 0.

There is some wasted effort implied here. There is no sense, for instance, in actually

running the filter over all those zero-valued missing traces in the PEF calculation step, so they

can be left out.

SAMPLING IN TIME

Dips do not change when the PEF’s axes are scaled, but frequencies do. This has two impor-

tant consequences. The first relates to the data’s temporal nyquist. The filter that we calculate,

shown in Figure 2.6, has half the temporal Nyquist of the filter in Figure 2.3. So even though

seismic data is almost never temporally aliased, we can have a problem estimating filter co-

efficients if the data contains frequencies above the half-Nyquist. Components at certain dips

and frequencies will simply slip through the gaps in the axis-scaled filter, and be effectively

invisible.

This is not a problem in principle, because since the data are not temporally aliased, it is

easy to resample the time axis and make sure the signal is below the half-Nyquist. But it is

something that is important to remember in practice. Figures 2.9 and 2.10 show an example

of the difference that resampling can make. Figure 2.9a shows a slice from a small cube of

seismic data, bandpassed and sampled at 8 ms so that the data band just fills all the available

frequencies, and Figure 2.9b shows its power spectrum. Figure 2.9c shows the same data,

resampled to 4 ms so that the data band fills half the available frequencies, with zeroes above

the half-Nyquist, and Figure 2.9d shows its power spectrum. Neither dataset is temporally

aliased. Figure 2.10 shows results of zeroing half the traces in those two inputs, and then

interpolating to fill the zeroed traces back in. The 8 ms data gives a poor interpolation result,

shown in Figure 2.10a. In some areas it is fine, and in some it is terrible. The badly interpolated

regions correspond to areas where a significant component of the data slips through the gaps
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in the axis-scaled filter. The 4 ms data (with signal at or below the half-Nyquist) produces a

good result, shown in Figure 2.10b.

So this is a manageable issue, but it does have some important consequences later, partic-

ularly with regards to sorting the input data. In particular, it is not hard to think of a situation

where you would rather interpolate to a sampling three or four times denser than the input,

rather than double as in most of the examples in this thesis. It is easy enough to scale the

filter’s axes by three or four, but that requires more resampling of the time axis, to be sure that

the filters do not miss the higher frequencies in the data. That in turn requires many more filter

coefficients to cover the same range of slopes in the data. Too many filter coefficients (degrees

of freedom) is often a problem. In fact, even with very low frequency input, my experience has

been that results turn out to be better when the data are interpolated in several smaller steps,

rather than one large step. An example is shown in the next chapter.

A second potential problem associated with scaling the PEF’s axes relates to dispersive

data. Scaling PEF axes assumes that events lie along lines in Fourier space, so that time dip is

independent of frequency. Dispersive waves have velocities which vary with frequency. If the

slope (velocity) of a seismic event is different at different frequencies, then the data’s PEF at

one scale may not predict that data at a different scale. In real data examples, I have not found

it to be a noticeable problem. Ground roll is dispersive, but can typically be interpolated. An

illustration of the potential problem, and the reason it may not be a serious issue in real data,

is shown in Figure 2.11.

Figure 2.11 shows three data sets with dips varying with frequency. Each row shows a data

set’s 2-D Fourier transform, original time-domain data, and the result of subsampling and then

interpolating the data.

In the first example, the data are just two sinusoids with different frequencies. It seems

to be a simple example to interpolate, but the result in the top right panel is terrible. The

estimated PEF’s spectrum needs to match the data at only a few points in Fourier space, and

those points effectively move when the filter is rescaled. The result is interpolated data with

the wrong dips.

The second and third examples are synthetics intended to simulate dispersive waves. In
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Figure 2.9: Samples of input data. The panels show (a) 8 ms input data and (b) its power
spectrum; and (c) 4 ms input data and (d) its power spectrum.bp-nyqin [ER]
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Figure 2.10: Samples of output data. The same as Figure 2.9, after zeroing half the traces and
interpolating to fill the zeroed traces back in. The panels show (a) 8 ms interpolation output
and (b) 4 ms interpolation output.bp-nyqout [ER]
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these cases, time dip of the events is a smooth function of their frequency. The interpolations

are somewhat successful, though not perfect (as we would hope on a simple, noise-free syn-

thetic). The example in the second row uses a single PEF, the example in the bottom row

uses nonstationary PEFs. The example in the bottom row is harder because the amplitude in

Fourier space does not decrease noticeably as the event bends. A single filter does not produce

a good interpolation result in that example. Using multiple filters is effectively just a way to

take some of the curvature out of Fourier space. In the middle row example, the energy dies

off more quickly as the event curves.

Parenthetically, this example also points out that the interpolation process as a whole is

nonlinear in the amplitude of the data, though the two individual steps of least squares are both

linear. For instance, in the top row, the input data is the combination of two data sets, each

with a single dip. Either of the two can be interpolated perfectly by itself. This is an issue if we

think of starting from a nonzero solution for the missing data samples. Something like linear

interpolation might seem to be a sensible way to get an initial guess, but Figure 1.7 points out

that that is not going to be useful if the data are not already well sampled. Nonlinearity adds

the prospect that linear interpolation or some other simple method may ultimately worsen the

result.

NONSTATIONARITY

The theory in this chapter assumes that the data arewide-sense stationary. A data sequence

is considered to be wide-sense stationary if it has constant mean and if its autocorrelation is

strictly a function of lag

E [u(n1)u(n2)] = a(n1,n2) = a(n1 −n2) (2.22)

Throughout this thesis, when data are said to be stationary, I mean that they are wide-sense

stationary. This is as opposed tostrict-sense stationary, which means that the data have the

same probability mass function everywhere.

We want to look at data with more than one dimension. Thinking in helical coordinates,
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Figure 2.11: Data whose dips vary with frequency and attempts to interpolate it. Columns
show Fourier transforms, input data panels, and results of subsampling and interpolating the
2-D data. Where the data are single-frequency sine waves with two different dips (top row),
the result is terrible. Where the data contain dispersive events, changing coninuously with
frequency, the results are somewhat better.bp-disp2 [ER]
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we can view a set of traces as a super trace and take its autocorrelation. Equation (2.22) says

that we should be able to get the same autocorrelation function for different subsets of the data

(different starting samplesn1). Intuitively, this coincides with the statement in the introduction

(taken from Spitz (1991)) that the data should be made up of linear events of constant slope.

Figures 2.12 and 2.13 show examples. Figure 2.12 shows a window from the far offsets

of a synthetic CMP gather, and autocorrelation sequences made from identical numbers of

samples, starting at different places within the window. Figure 2.13 shows a window from

the inner offsets of the same gather, and autocorrelation sequences. The far offsets, where

data tends to be made up of linear events as hyperbolas approach their asymptotes, are by

appearance nearly stationary, and the autocorrelations are approximately equal except for a

scale factor. The inner offsets, where the events are obviously changing dip, do not look

stationary and do not have approximately equivalent autocorrelation functions.

Figure 2.12: Synthetic seismic data, and autocorrelation functions calculated from different
subsets of the data. The data are approximately wide-sense stationary, so the autocorrelations
are approximately identical, except for a scale factor.bp-stationdata[ER]

Seismic data are not, as a rule, stationary. The slopes of seismic events change with offset

and time, and when the geology is nontrivial, with surface locations also. This just means that
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Figure 2.13: Synthetic seismic data, and autocorrelation functions calculated from different
subsets of the data. The data are nonstationary, so the autocorrelations are significantly differ-
ent. bp-nonstationdata[ER]

we can not use a single PEF to represent the spectrum of all the data, but only as much data as

we can reasonably assume to be stationary.

Patching

The most common way to deal with nonstationarity is to divide the data into smaller regions,

called “patches” in this thesis (after Claerbout (1997)), though “design gate” and “analysis

window” and other terms are common. We assume the data are stationary within a patch.

Each patch is treated as an individual problem. For each patch, we calculate a PEF and

then missing data values. After all the patches are interpolated, we reassemble them to form

a complete data set. To make the patches fit together without visible seams, and to hide the

boundary conditions of the convolution operators, we choose the patches so that they overlap,

and reassemble the patches with some simple normalization.
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The BP synthetic example which follows uses patching, and within each patch, the imple-

mentation described above.

Smoothing

For the most part, the results in the BP synthetic example later in this chapter are good. How-

ever, they could improve. Near offsets and wherever the data has strong curvature tend to be

poorly interpolated. The assumption that we can divide the data into rectangular regions where

it is composed of linear events with constant dip seems like a bad assumption. Events are

strongly curved, their dips change over short ranges of offset, but they don’t change abruptly.

The dips change continuously and smoothly. In order to have a set of assumptions which better

fit this observed quality of the data, I extend the notion of time-variable deconvolution (Claer-

bout, 1997) to time- and space-variable interpolation. As an alternative to dividing the data

into independent regions, we can estimate a PEF for every data sample, and use a smoothness

criterion to calculate smoothly-varying filters to fit the smoothly-varying dips in the input data.

This is the subject of the next chapter.

BP SYNTHETIC EXAMPLE

The first nontrivial interpolation example uses a synthetic dataset provided by British Petroleum.

The dataset is 2D, and was modeled using elastic finite differences on a tabular salt model.

The velocity model is shown in figure 2.14. The water layer and the salt give rise to multiples,

which become aliased when the data are subsampled to simulate a dual-source marine geome-

try. The presence of the salt leads to complicated moveouts and a wide angular band in much

of the data, making it an interesting test for interpolation. A representative shot gather from

over the the salt body is shown in Figure 2.15.
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Figure 2.14: Velocity model for the BP synthetic data. The dark irregular feature is a salt body.
bp-bpvel [ER]

Subsampling the BP synthetic data

The data are modeled with equal source and receiver spacings. We can throw out every other

shot, and thus simulate a single inline from a multi-source 3D survey. Alternatively, we can

throw out every other receiver surface location, which in this case happens to be more conve-

nient, but has the same effect on CMP sampling. As an example, Figures 1.4 and 1.5 show

the difference in CMP sampling for a survey with equal shot and receiver sampling, and with

the shot sampling interval doubled. Instead of removing rows from Figure 1.4 (as we did to

make Figure 1.5), we could remove columns, and the CMP gathers would be undersampled in

the same way. With half the data removed, the CMP gathers lose alternating offsets, so that

the offset spacing is four times the offset spacing of a shot gather. The decrease in sampling

causes many of the events to become aliased. Figure 2.16a shows a CMP gather constructed

from the original data, with shot spacing equal to receiver spacing, and Figure 2.16b shows

the CMP gather for the same midpoint, constructed from the subsampled input. This data

contains apparently asymmetric events which make it appear not to be a CMP gather at all (for

example at 5 seconds and 5000 meters offset), but these are peg-leg multiples with multiple
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Figure 2.15: Representative shot gather from the BP synthetic survey.bp-bpshot[ER]
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paths, which would turn out to be symmetric if the negative offsets had been modeled. The

mechanism is explained in detail by Thorson (1984). The steep events, which are not aliased

or just slightly aliased in Figure 2.16a, are strongly aliased in Figure 2.16b. While the data

do appear to be somewhat aliased in the Figure 2.16a, applying a slight moveout removes the

aliasing. Moving out the data in the right panel does not remove the aliasing, because events

curving upward begin to be aliased before events curving downwards cease to be aliased. Fig-

ures 2.17a and 2.17b show the same two panels with moveout applied. The velocity chosen is

between the primary and multiple velocity, so that on average everything will be relatively flat

(not stackably flat, but hopefully flat enough that they are not aliased). The left panel, Figure

2.17a, does not appear to be aliased at all, but in Figure 2.17b some of the events curving up

and some of the events curving down have ambiguous dips.

The dip ambiguity in Figure 2.17b leads to artifacts in the Radon transform. Parabolic

Radon transforms of both panels appear in Figure 2.18. Figure 2.18a shows the Radon trans-

form of the unaliased gather from 2.17a, and Figure 2.18b shows the Radon transform of the

aliased gather from 2.17b. The horizontal axis displays milliseconds of moveout at 10000 feet

of offset, rather than velocity or slowness. There are obvious artifacts, due to aliasing, streak-

ing across Figure 2.18b. These artifacts make it difficult to remove multiples, because energy

from both primaries and multiples is spread throughout the Radon transform domain.

The goal of the interpolation in this case is to generate dealiased data from the aliased data

so that we wind up with a Radon transform similar to Figure 2.18a and not Figure 2.18b.

Interpolating the BP synthetic data

The subsampled BP synthetic data were used as input to a two-stage, PEF-based interpolation

algorithm. The first stage calculated a PEF using equation (2.18), the second stage calculated

missing data using equation (2.21). Both steps were solved with conjugate gradients. To deal

with nonstationarity, the data were divided into 3-D rectangular patches, chosen to overlap so

that every data sample (barring those along the edges of the input data cube) was in several

patches. Along a single axis, a data point is typically in 1.5 to 2 patches, which translates to 3

to 8 3-D patches.
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Figure 2.16: CMP gathers from the BP synthetic. The left panel is constructed from the full
data set, the right is constructed from the subsampled data.bp-cmps1[ER]
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Figure 2.17: The CMP gathers from Figure 2.16 with moveout applied to remove aliasing
effects. The well-sampled CMP gather shows no aliasing, the subsampled gather still shows
some aliasing. The arrows labeledA throughD point to events that appear to have more than
one dip. bp-cmps1nmo[ER]
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Figure 2.18: Parabolic Radon transforms of the gathers from Figure 2.17. The aliasing in the
subsampled gather gives rise to strong artifacts in the Radon transform. The horizontal axis
displays milliseconds of moveout at 10000 feet of offset, rather than velocity or slowness.
bp-rads1[NR]
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The results, shown in the next few sections in the prestack, stack, and radon domains, are

mostly very good. After interpolation, Radon transforms and stacks of the data are basically

indistinguishable from the same results using the full original data, and significantly better

than the same results using the subsampled data.

Results in the prestack domain

The next several figures show interpolation results and difference panels on the prestack data.

Figure 2.19 shows two CMP gathers. The left, Figure 2.19a, is from the original data, and

the right, Figure 2.19b is from the subsampled and interpolated data. The two are difficult

to tell apart at this scale. Figure 2.20 shows close ups on two portions of the original CMP

gather from Figure 2.19a, and close ups on the same two portions of the difference between

the original and interpolated CMP gather. Figures 2.20a and 2.20b are close ups of the far

offset, late time corner of the CMP gather. Here the data are mostly linear events, which are

ideal for prediction with PEFs. Not surprisingly, the difference panel shows little. The data in

this section of the data are very predictable, and the difference between the interpolated data

and the original data is small.

Figures 2.20c and 2.20d are close ups on a near offset, intermediate time window of the

CMP gather. Here the data are more complicated. There are strong bending events, and dips

generally change significantly from one region to the next. These data are harder to predict

with a PEF than the data in Figure 2.20a, and this comes out in the difference panel, Figure

2.20d. This difference panel has much more energy than that for the more predictable data.

Results in the Radon domain

The purpose for resampling the CMP gathers in this case is to remove the aliasing artifacts

from the Radon transforms. Figure 2.18 shows Radon transforms of the original data and of

the subsampled data which was the input to the interpolation. The interpolation results were

transformed the same way for comparison. Figure 2.21 shows the Radon transform of the

interpolated data, and a difference panel. Figure 2.21a shows the transform of the same CMP
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Figure 2.19: CMP gathers. The left is from the original data, the right from the subsampled and
then interpolated data. Difference panels are shown in close up in Figure 2.20.bp-bpcmps
[CR]
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Figure 2.20: CMP difference panels in closeup. The left two panels show close ups on por-
tions of the original CMP gather, shown in Figure 2.19. The right panels show the difference
between the interpolation result and the original data in those two portions. The differences
are noticeably smaller where the events are mostly linear.bp-bpcmpdiff [CR]
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gather used in Figure 2.18, but constructed from the interpolated survey. Figure 2.21b shows

the result of subtracting 2.21a from Figure 2.18a. The difference is very small, implying that

the difference between the results of Radon demultiple on the full data and on the interpolated

data would be small. Most importantly, results on the interpolated data should be better than

on the subsampled input data, because the artifacts which are obvious in Figure 2.18b do not

appear in Figure 2.21a.

Results in the poststack domain

Figure 2.22 shows a subsalt portion of a stacked section. The left panel shows the result of

radon demultiple and stack on the decimated data, the right panel shows the result of simple

stack on the interpolated data. The reason for the difference in flow is that simply stacking the

data which has been dealiased by interpolation (leaving out the innermost few traces) removes

most of the multiple energy, but doing a similar operation on the decimated data (left panel)

gives a terrible result, because the aliased nature of the multiples causes them to come through

in the stack as a short-period (50ms or so) series of seafloor multiples that completely obscures

the section. At any rate, the right panel is approximately identical with or without going to

the trouble of radon transform. Strong multiple events (examples atA) are suppressed more

or less equivalently in the two sections; arguably somewhat better in the interpolated data.

Some important primaries atB are significantly attenuated in the decimated data, as shown

by comparison with the interpolated data. Also, throughout the section, most visible in the

neighborhood ofC, aliasing results in layer-like artifacts. Finally, many interesting arrivals,

especially diffractions, in the faulted area aroundD are strongly attenuated in the decimated

data.
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Figure 2.21: Radon transform of interpolated data, and difference panel. The left panel is
the Radon transform of a CMP gather constructed from the subsampled, interpolated data.
Ideally, it should be the same as the Radon transform of the original data. The right panel is
the (thankfully small) difference.bp-interprads[NR]
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Figure 2.22: Portion of unmigrated stacked sections. The left panel shows decimated data
after demultiple and stack, the right panel shows same data after interpolation, demultiple, and
stack. Multiples (A) are arguably better attenuated in the interpolated data. The decimated
data shows attenuated primary events (B), attenuated diffractions (D), and layer-like artifacts
(C). bp-stacks[NR]



Chapter 3

Interpolation with adaptive PEFs

In this chapter, I introduce a new method for dealing with the nonstationarity of the input

data. In the previous chapter, the data are divided into rectangular patches and assumed to be

stationary within a patch. Each patch is an independent interpolation problem. This implies

that seismic events have piecewise constant dips in prestack data. In general that is not true,

though it can be nearly true in cases, particularly at long offsets, where seismic events tend

to approach their asymptotes. In this chapter, instead of independent patches, we divide the

data into smaller regions, as small as a single data sample, and assume that the dip of seis-

mic events varies gradually with location in the data. We refer to the new, smaller regions

as “micropatches.” They are no longer independent problems, but a series of related prob-

lems. Following the literature, we say we have moved from block estimation to adaptive or

nonstationary estimation.

Instead of independent problems in patches, we smooth between micropatches. We apply

a smoother between values at identical lags of different PEFs, in such a way that PEFs which

are applied at similar data coordinates are averaged together. For statistical robustness, we

want to smooth as much as possible, but we want to avoid making a roundabout assertion

of stationarity where the data are not stationary. To maximize the area in data space over

which PEFs are averaged, without averaging nonstationary regions together, we can choose

the directionality of our smoother. CMP gathers tend to have nearly constant dips in regions

51
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along radial lines, so we choose the radial direction.

The filter calculation part of the problem becomes large and underdetermined. Happily,

however, it converges in few iterations, and turns out to be cheaper and lead to better interpo-

lation results than interpolation in independent patches.

ARGUMENTS AGAINST PATCHING

Independent patches work reasonably well in many cases, but there are some arguments

against them. One easy argument against patching is that it effectively increases the size of the

data. Patches usually need to have significant overlap in order to get a good interpolation result

at the end. Along a single axis, a given data point is contained in 1.5 to 2 patches on average.

For a 3-D cube of input data, as in a prestack 2-D survey or a prestack 3-D survey considered

as individual source/streamer combinations, that effectively increases the data volume by 3.5

to 8 times.

Using adaptive PEFs means a larger volume of PEFs rather than of data. The larger volume

of PEFs does not add to the number of computations required the way that a larger data volume

does. The computational cost of convolutions increases with the size of the data and the

number of coefficients that multiply each data point (the size of a single filter), but is indifferent

to whether the coefficients that multiply two different data points belong to the same filter or

different filters.

More important than the cost, there is the argument that the data are not really aligned

along linear, constant slopes. There are often large portions of the data that nearly are, usually

at late times and large offsets, where events approach their asymptotes. However, there are

also portions of the data that do not fit that model, especially near the apex of hyperbolas,

where events have the most curvature. As shown in Figure 2.20, where events have significant

curvature, interpolation results suffer. Modifying our assumptions to fit curvy data should help

us get better interpolation results.

Also, while there is some convenience in the notion of dividing the interpolation into many

small independent problems, it ignores some potentially useful information. Dips in prestack
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seismic data are not independently distributed throughout the data volume. The seismic data

response of a point reflectivity anomaly is large relative to an interpolation patch, and of a

somewhat predictable shape, even with variable velocities. In other words, even when events

are nonhyperbolic, they are likely to be nearly hyperbolic, in some rough sense.

Instead of filters in independent patches, in this chapter we estimate sets of filters in

smaller, non-overlapping, non-independent micropatches. Micro-patches which are near each

other in the data volume are assumed to have similar sets of dips, and thus similar filter co-

efficients. We assume that dips of seismic events change gradually as we move around in the

data. The micropatches are small enough so that events with tight curvature can be still be rea-

sonably resolved into linear events, but large enough to avoid excessive memory consumption

brought on by allocating more filters than necessary.

IMPLEMENTATION OF ADAPTIVE PEFS

Interpolating with adaptive PEFs means calculating a large volume of filter coefficients. It

is possible to estimate all these filter coefficients by the same formulation as in the previous

chapter, supplemented with some damping equations, like

0 ≈ YKa + r0 (3.1)

0 ≈ ε Ra (3.2)

whereR is a roughening operator,Y is convolution with the data, andK is an adjustable filter

coefficient selector.R does not roughen between coefficients within a single filter, but between

coefficients at the same lag in different filters.

When the roughening operatorR is a differential operator, the number of iterations can be

large. To speed the calculation immensely, we can precondition the problem. Define a new

variablep by a = Spand insert it into (3.1) and (3.8) to get

0 ≈ YKSp + r0 (3.3)

0 ≈ ε RSp (3.4)
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Now, because the smoothing and roughening operators are somewhat arbitrary, we may as

well replaceRSby I and get

0 ≈ YKSp + r0 (3.5)

0 ≈ ε Ip (3.6)

We solve forp using conjugate gradients. To geta, just usea = Sp. Oncea is calculated, the

missing traces are filled in as before. To simplify the formulation, one could drop the damping

(3.6) and keep only (3.5); then to control the null space, start from a zero solution and just

limit the number of iterations. This is the way most of the examples later in this chapter are

calculated.

Previously we solved for the PEFsa, which have a fixed coefficient that is defined to have

the value 1. We instead estimatep, which is related bya = Sp. It appears troublesome that

we do not necessarily know the fixed coefficient ofp. We can begin by applyingp0 = S−1a0,

putting some other value in the fixed coefficient ofp, that will be integrated byS to give 1’s.

But it is a hassle to then applyp to the data because our software has the value 1 built in.

Luckily, the problem disappears by itself. Wherever the forward operator is applied, it looks

like YKSp, which is the same asYKa . We only need to applyS to the adjustable coefficients

of p, because we know the fixed coefficient ofSpequals one, even if we do not know the fixed

coefficient ofp. We do not need to know or store the fixed coefficients ofp.

RADIAL SMOOTHING

We have to chooseS. Inserting a smoother signifies the assertion that the dips in seismic data

should change in a gradual way. Choosing an isotropic smoother means we expect the dips to

vary similarly in all directions. However, we know that the dip spectrum of the data probably

changes more quickly in some directions than in others. We want to smooth most heavily

along directions where the dip is nearly constant.
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In a constant-velocity, flat-layered earth, events fall along hyperbolas like

t2
= τ2

+
x2

v2
,

wherex is offset,v is stacking velocity,τ is zero-offset time. The time dip of an event is

dt/dx. If velocity is constant, differentiating gives

dt

dx
=

x

v2t
,

which means that the dip does not change along radial lines, wherex/t is constant. In a real

earth, we suppose that dips will change, but slowly. Real earth velocity may change quickly

in depth, but hyperbola trajectories are functions of RMS velocity, which is smooth.

We want a smoother with an impulse response which is highly elongated in the radial

direction. To get a big impulse response cheaply, I apply the inverse of a directional derivative,

pointed in the radial direction. To directly apply the inverse, the roughener has to be causal,

which means that the inverse will only smooth in one direction. We wantS to have an impulse

response which is smoothed both in towards zero radius and out towards large radius, so we

make it the cascade of the causal smoother and its anticausal adjoint.

Patches, micropatches, pixels

Having chosen the radial direction, we can think of some different ways of implementing our

radially-smoothed filters. An obvious one is putting a PEF at every point on the data grid, and

devising a derivative filter which adjusts its direction to point at the origin. An alternative is to

overlay a radial grid on the data grid, and arrange PEFs on the radial grid. Here we compare

the two smoothing schemes.

Our goal is to assume stationarity in a small enough region that we can interpolate well

where the data do not fit a plane-wave model. In the method of independent patches, individual

patches are treated as separate problems. A patch can not be arbitrarily small, because it must

provide enough fitting equations that the filter coefficients are well overdetermined. In 1-D,
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filtering with a PEF looks like this:

û(i ) =

p∑
k=0

a(k)u(i −k), p+ ipatchmin≤ i ≤ ipatchmax. (3.7)

The patch boundaries areipatchmin and ipatchmax, p is the number of adjustable coefficients,

a(0) = 1. The lower limit oni is to prevent the filter from running off the end of the data and

encountering implicit zero values. The patches are designed to overlap, and the outputs are

normalized to hide the patch boundaries.

In moving to the method of gradually-varying PEFs, we replace the notion of extracting a

subset of the data with that of dereferencing the data coordinates to find the appropriate filter,

as in

û(i ) =

p∑
k=0

ai (k)u(i −k), p+1 ≤ i ≤ idatamax. (3.8)

The index of the data samplei dereferences the set of filtersai (k). The data boundariesi = 1

andidatamaxreplace the patch boundaries.

We have lots of freedom in dereferencingai . In the limiting cases, all the data may share

one PEF, or we can chooseai to be a different set of coefficients for each data point. In the

case where we have a PEF at every data point, we callS pixel-wise smoothing.

Choosing a separate PEF for every input sample is a possibility, but not necessary. Our

motivation for moving away from independent patches was to use one PEF in a region small

enough that we do not have trouble with nonstationarity. Some amount of patching may still

make sense, provided the patches may be small. It is easy to implement small patches as

a generalization of the case above where each data sample has its own PEF. A particularai

can be the same for any number of values ofi without complication. Because they may be

small, we refer to the new patches as “micropatches” to distinguish between them and the

independent patches of the previous chapter.

To subdivide a CMP gather into micropatches, we choose a web-like grid made up of

radial lines and circular lines. Radial lines are a natural choice because we want to smooth in
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the radial direction. Circles are somewhat arbitrary; we could choose flat lines or reflection-

like hyperbolas to cross the radial lines. Circles have the attractive property that they make

equal-area micropatches at a given radius.

Smoothing pixels versus smoothing micropatches

We can choose pixel-wise smoothing or micropatch smoothing. An easy argument favoring

micropatches over pixel-wise smoothing says that putting a filter at every data sample is a

tremendous waste of memory. If the data are predictable at all, they are probably not so

nonstationary that they need a separate PEF at each sample. A single 3-D PEF has easily 20

or more adjustable coefficients, so allocating the set of PEFs requires 20 times the storage of

the input data. Even very small micropatches require much less memory.

Micropatches also have some simplifying side effects that make them preferable to pixel-

wise smoothing. One is apparent from examining Figures 3.1 and 3.2. Figure 3.1 shows

smoothing in micropatches and Figure 3.2 shows pixel-wise smoothing. In each figure, the

values represent filter coefficients displayed in data coordinates. The axes are time and offset.

The top halves show a set of impulses, which I labeld. M is the operator which bins the

impulses into micropatches, whileP bins into pixels (naturally,Pd= d). The variously binned

impulses are shown in the panels labeledMd andPd. F andF′ are pixel-wise smoothing

operators pointed towards and away from zero radius, respectively.C andC′ are the corre-

sponding micropatched smoothers. The impulses are smoothed using the pixel-wise operator

in the panels labeledFPd andF′FPd; smoothing with the micropatched operator is in panels

CPd andC′CPd. In this case, the two are similar, though the pixel-wise smoother obviously

produces a higher-resolution picture (though the micropatches could be made much smaller).

The same exercise is repeated in the bottom halves of the two figures, this time using a

constant function instead of impulses.M1 has an angular limit applied. Pixel-wise smoothing

creates some very large ridge artifacts, visible inFP1 andF′FP1, where the angle between a

data sample and the origin corresponds to an integer slope. Also, where the constant function

is smoothed in towards zero radius,FP1, energy concentrates in a huge spike at the origin.

Whichever smoother (F′F or C′C) we choose will be used forS in equation (3.5).F′F
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andC′C can be thought of as weighting functions. It is desirable to have the flatter weighting

functionC′C. It is also simpler to implement. Producing the many different angles in Figure

3.2 requires that the smoothersF and F′ be made up of many different filters, oriented in

a continuous sweep between a spatial derivative and a time derivative.C and C′ produce

the same range of angles in Figure 3.1 using a single, radial derivative filter. The PEFs in

micropatches are regularly gridded in angle and radius, so they are easily smoothed in those

directions with old-fashioned stationary 1-D derivative filters. PEFs at every pixel are instead

regularly sampled in time and offset, so working in polar coordinates requires some work.F

uses many coefficients,C uses two.

Is smoothing necessary?

An unexplored alternative to radial smoothing may be to simply lengthen the micropatches

in the radial direction, and not bother smoothing at all. I have not tested this direction very

thoroughly, though in the tests I have done, it seems that smoothing may have some important

effects beyond just statistically compensating for the small size of a micropatch. Even with

very elongated patches, my experience has been that smoothing noticeably improves the final

result, particularly where the data are noisy. One possible explanation is that where the data

are incoherent, the change in a particular filter coefficient at each iteration is just an average

of noisy data samples, which is approximately zero. With the addition of the smoother, the

change in nearby filter coefficients fills in.

Radial smoothing and variable velocity

We chose the radial direction because dip of seismic events is constant along radial lines. But

that is only true in ideal circumstances. On radial lines, dip is constant if stacking velocity

and geologic dip are constant. Naturally, things are more complicated in real life. Velocity

is generally not constant. Multiples and complex structure can introduce all manner of un-

predictable dips, in all types of gathers. Nonetheless, radial smoothers work. My experience

has been that the radial smoother works as well as or better than an approximately isotropic

blob smoother, on common-shot, common-receiver, and CMP gathers. Figure 3.3 shows an
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Figure 3.1: Illustration of micropatched radial filter coefficient smoothing.sm-curtSmear8
[ER]
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Figure 3.2: Illustration of pixel-wise radial filter coefficient smoothing.sm-random8[ER]
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example of an interpolation result using radially-smoothed PEFs to interpolate, and the same

result using isotropically smoothed PEFs. The results are similar, but the radially-smoothed

PEFs did a better job at interpolating the events dipping back towards zero offset. Inspection

of the figures shows that all those events have about the same dip. The isotropic smoother had

a similar number of coefficients, but did not do as well. Smoothing in all directions implies

smoothing along events where their dip is changing, while smoothing radially implies smooth-

ing along events only where they reach their asymptotes. A PEF can predict more than one

dip, but not too many. In the isotropic case, a filter may be averaged over a region containing

all manner of dips. For instance, near the apex of a hyperbola there is a range of positive and

negative dips. At any rate, it is pleasing that the radial scheme works well.

Figure 3.3: Comparison of interpolation results using isotropic and radial filter smoothing.
Both results are reasonably good, but the radial smoothing result (right panel) is better where
events are flat or dip back towards zero offset.sm-radblob[ER]
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PARAMETER SPACE

The parameters for smoothing and micropatching, the size and shape of the PEFs, and the

number of iterations to spend on filter calculation and missing data calculation all make for a

large parameter space. And unfortunately, results tend to be sensitive to at least a few of the

parameters.

The numbers of iterations are important parameters, especially the number of filter calcu-

lation iterations. Too many iterations during the filter calculation step results in a noticeably

degraded final result. A small amount of damping is very good at reducing sensitivity to the

numbers of iterations, though the damping parameterε must be chosen, and a bad choice can

also contribute to a bad result. Either way, a little experimentation usually will provide the

answer. Most of the examples in this and the next chapter are done withε = 0.

The size, shape, and density of PEFs can also lead to bad final results, if chosen poorly.

In my experience the effectiveness of a set of filter parameters is largely independent of the

lengths of the slow axes (shot number, midpoint number, etc.) of the input data. Put another

way, the settings that work for one or two input gathers will generally work for any number of

gathers, so it easy to test parameters quickly.

Another parameter that can significantly affect the outcome is the ratio of original spacing

to interpolated spacing. In principle, it can be any integer, but in practice it should usually be

two (as it is in most of the examples). There is no reason not to interpolate several times in a

row, and this is usually the best way to get some larger ratio of sampling intervals. One reason

is that scaling the axes of a PEF by a large factor decreases the range of frequencies that the

PEF can reliably detect. The fix is to resample the time axis of the data, but that also means

lengthening the PEF in time, in order to maintain the same range of dips. The extra degrees

of freedom in the longer filter can result in spurious events and so forth. Even in simple tests,

where the data is low frequency and does not require temporal resampling, my experience

has been that interpolating in multiple steps works better than quadrupling (or more) the data

in one step. As an example, Figure 3.4 compares interpolation results where some very low

frequency data have their offset sampling density quadrupled in two steps and in one step. The

left panel shows the original data. The original data were lowpassed so that energy would lie
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below one quarter of its temporal Nyquist. The center panel shows the result of interpolating

twice, doubling the data each time. The right panel shows the result of interpolating a single

time, quadrupling the data. Something has obviously gone wrong in the right panel.

Figure 3.5 shows what happens in Fourier space. All the panels in this figure are cropped

on the temporal frequency axis for clarity. The top left panel is the 2-D Fourier transform

of the original, well-sampled data. The top center panel is the Fourier transform of the data

after replacing three out of four traces with zeros. Zeroing the traces is a sampling operation,

which leads to replication in the Fourier domain. The top right panel is the Fourier transform

after attempting to interpolate all the zero traces at once. The interpolator needs to zero all the

replicate versions of the input data’s spectrum, and leave the originals alone. However, PEF

spectra tend to be very simple (as in Figures 2.7 and 2.8), since a PEF is made up of a handful

of coefficients. The PEF that passes the original part of the spectrum also passes the replicate

spectrum that is aligned approximately along the same diagonal line in Fourier space. The two

blobs in Fourier space that line up with the original data spectrum are only partially attenuated

in the top right panel. Those events correspond to the same temporal frequencies, but higher

wavenumbers, and so in the time domain the result has anomalously high dips (shown in the

right panel in Figure 3.4).

The bottom three panels of Figure 3.5, show the process of interpolating in two steps.

The bottom left panel is the Fourier transform of the data with zero traces, after removing

half the zeros. This panel is just like the top center, with the outermost spatial frequencies

removed. In this case there is no trouble with original and replicate spectra aligning, and it

is straightforward to interpolate. The bottom center panel shows the halfway point in the two

steps of interpolation. This is the Fourier transform after interpolating and then reinserting the

zeros that were removed. Again there is a replicate of the original spectrum to remove, but it

does not line up with the original, so it is straightforward to remove it. The Fourier transform

of the interpolation result is in the bottom right panel, the result in the time-domain is shown

at the right side of Figure 3.4.

Manin and Spitz (1995) may allude to something similar, when they suggest that if fold is

very low, the data should be interpolated in multiple steps along different directions.
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Figure 3.4: The difference between refining data sampling in one step and in multiple steps.
The data in the left panel were subsampled by keeping every fourth offset, and zeroing the
other three. The center panel shows the result of interpolating the data in two steps. The right
panel shows the result of interpolating the data in one step.sm-curtlow [ER]

SHOTS VERSUS RECEIVERS, 2-D VERSUS 3-D

There are a couple of choices to make concerning how to arrange the input data. The first is

really a matter of sorting. Since the data are not really being addressed by physical coordinates

but rather by shot number and channel and so forth, it makes sense that the way the data

are sorted might affect the output, because sorting changes the distribution of recorded and

nonrecorded traces. This is shown in the previous chapter, in Figures 2.4 and 2.5. One cube

can be made from the other by sorting. It is intuitively appealing to have each missing trace

surrounded on all sides by known data, as in Figure 2.4.

Another important choice is how much data to work on at one time, and whether to split

the data in such a way that its dimensionality is reduced. Some of the data sets used in the

examples are 2-D data sets, and some are 3-D. In the case of marine data, there really is very

little difference between 2-D data and 3-D data, and the same routines are used. In the case of

land data, 3-D can be vastly more complicated than 2-D.
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Figure 3.5: Fourier transforms illustrating the difference between refining data in one step
and in multiple steps. The top left is the spectrum of the original data. The top center is the
spectrum after replacing three fourths of the traces with zeroes. The top right is the result of
interpolating all the empty traces at once, it is not a good facsimile of the original spectrum
at top left. The bottom left is the spectrum after removing two thirds of the zero traces. The
bottom center is the spectrum after interpolating the remaining zero traces, and reinserting the
zero traces which were removed. The bottom right is the spectrum of the final interpolation,
and it is a much better estimate of the top left panel.sm-curtlowspecs[ER]
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A 2-D prestack data set is a 3-D cube, with axes for time, midpoint, and offset; or time,

shot, and receiver. A 3-D prestack data set is a 5-D cube of data, where the surface axes each

have an inline and crossline component. In marine acquisition, the boat typically tows only

two sources, and so it is easy enough to consider a sail line to be two 4-D cubes of seismic

data. Because the crossline receiver aperture may be small, with only a few streamers, it

makes sense to decompose each of those two 4-D cubes into a series ofnstreamer3-D cubes.

It is helpful to pad a couple of zeroes onto each axis during the filter calculation step. If the

data are only a few points wide along one axis, then padding that axis can easily double the

size of the data. It also significantly increases the number of filter coefficients, if the filter has

some width along the extra axis. Thus for a boat with few streamers, including the crossline

receiver axis can easily double the size of the input data, making convolutions that much more

expensive, but probably not improving the final results noticeably.

There are benefits to using more dimensions. Having an extra direction for things to be

predictable in often means a better interpolation result. Calculating a PEF from a 2-D plane

of white noise will produce a filter that works like an identity. That filter will then not insert

anything into any missing samples. If the plane of white noise is a slice from a cube or

hypercube that contains coherent energy along some other axis, then a PEF that is calculated

with some coefficients spread along that coherent axis will be a good interpolator.

My experience has been that a three dimensional input cube (many 2-D gathers) works

noticeably better than a single two dimensional gather. Four dimensions work somewhat better

than three, but the returns diminish as the misfit gets small. At any rate, on most examples I

have done, three dimensions turns out to be plenty to get a good interpolation result. Nearly all

of the examples in this thesis are done with three dimensions of input. If there are only a few

streamers, working in 4-D brings many extra computations because of padding, and because

adding one to the dimensionality of the PEFs significantly increases the number of coefficients

in each filter. It is probably not worth the extra computations if a good result comes from 3-D.

If there are many streamers, as is the case with some modern boats which may have 10 or 20,

or if results with three dimensions are not good enough, then it would make sense to use a 4-D

input.

As a final note, the notion of deciding whether or not to filter along the crossline receiver
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axis assumes that that is not the axis you want to resample. However, one can certainly imagine

wanting to interpolate new streamers, to refine the typically sparse crossline receiver sampling.

In that case, you would naturally want to predict in that crossline receiver direction. This is

done in an example later in this chapter.

DATA EXAMPLES

Marine 2-D shot interpolation example

Figure 3.6 shows a slice from a cube of 2-D shot gathers. The data have long-period multiples,

and complicated moveouts caused by a tabular salt body. The geologic structure in the area

is similar to the model used to generate the synthetic data in the previous chapter, though this

data has the virtue and added complications of being real field data. This data set is 2-D, with

shot sampling and receiver sampling equal. As in the last chapter, we can throw out alternating

receivers in a checkerboard pattern to simulate common receiver gathers formed from a single

inline from a 3-D survey with flip/flop acquisition. We can also just throw out alternating shots

to simulate common shot gathers from the same survey.

As a test, we interpolate both ways. Figure 3.7 shows a closeup of the input, zoomed in

on regions between 2 and 4 seconds in Figure 3.6. Figure 3.8 shows the interpolation result

on common shot gathers. Figure 3.9 shows the interpolation result on simulated common

receiver gathers. The traces shown in Figure 3.9 are the same as in the other figures, but traces

were zeroed in a checkerboard pattern (as in Figure 2.4) to simulate the pattern of known

and missing traces that arises from forming common receiver gathers after throwing out every

second shot. In the other case, where the data are just representing shot gathers, every second

slice in the cube was zeroed (as in Figure 2.5).

The most obvious difference between the results in Figures 3.8 and 3.9 is in the events

which dip back towards zero offset. The data which are interpolated in slices have lost most of

these events, while the data which are interpolated in the checkerboard pattern restored those

somewhat. In the best case, just under 95% of the variance of the original data is predicted.

An unexplored alternative to resorting the data may be to rotate the filters by 45 degrees.
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Figure 3.6: Sample shot gather from the original data.sm-355exshotgather[ER]
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Figure 3.7: Portion of a marine shot
gather. Part of the original data that is
subsampled and interpolated to make
the next figures. sm-355start.shot
[ER]

Marine 3-D shot interpolation example

Figure 3.10 shows another shot gather, this from one a 3-D marine survey. While in previous

examples I threw out portions of a 2-D survey, to simulate a flip/flop acquisition, this data

actually was collected with a flip/flop acquisition. Thus we can not do exactly the same exper-

iments as with the previous 2-D examples. On the other hand, the dips in this data are more

routine than those in the previous data, so it should be subsampled more to make an interesting

test. Instead we start from the slightly subsampled data (using one source from a two-source

survey), and remove half the shots again, so the shot interval is four times the receiver interval.

Figure 3.10 shows one of the shot gathers that was removed, and the interpolated version

of that shot gather is shown in Figure 3.11. The interpolated shot gather is extremely faithful to

the original, predicting 94% of its variance. The most noticeable differences are back-scattered

noises at late times and short offsets which are not interpolated well. In the electronic version

of this document, Figure 3.10 is a two-frame movie, comparing the original and interpolated
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Figure 3.8: Portion of an inter-
polated marine shot gather. This
is the result of subsampling the
shot axis and interpolating with
the data sorted as shot gathers.
sm-355shotsub.out.shot[ER]

gathers.

Figures 3.12 and 3.13 show another view. These are time slices through cubes made up of

one source and one streamer. The three slices in each figure correspond to the three steamers in

the survey. Not surprisingly, the time slices appear slightly smoothed along the shot number

axis, where the data were subsampled. The visible events are all continued in a coherent

manner, but may be a bit too coherent in areas where some high-wavenumber fluctuations

of events were removed by the subsampling, and then replaced in a smooth fashion by the

interpolation.
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Figure 3.9: Portion of an inter-
polated shot gather. This result
simulates subsampling the shot
axis and interpolating with the
data sorted as receiver gathers.
sm-355recsub.out.shot[ER]

Interpolating crossline in the 3-D marine case

For some applications, it may make sense to refine the crossline receiver sampling. Prestack

datuming, for instance, can be hampered in 3-D because the relatively sparse crossline sam-

pling requires much stronger antialiasing on energy moving in the crossline direction than on

energy moving in the inline direction. The SRME demultiple method requires many more

receivers than are recorded, in order to model multiples that bounce at surface locations be-

tween streamers. In both cases, there are other issues as well. In particular, sources tend to

be placed nearly at the center of the crossline range of the receiver spread, and should be ex-

trapolated outward in the crossline direction, for reciprocity’s sake. That should probably be

done with some other algorithm, because the very narrow dip range that should exist between

the two nearly central, only slightly separated sources is not likely to have information neces-

sary to model sources far away. Put another way, PEFs can always interpolate, but can only

extrapolate along straight lines.
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Figure 3.10: 3-D shot gather. This shot gather was among the half removed from the input
data, and then reinterpolated. The interpolated version of this shot gather is shown in Figure
3.11. sm-curt.in [ER]
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Figure 3.11: Recreated 3-D shot gather. The shot gather in Figure 3.10 was removed and
interpolated from nearby shots to produce this shot gather.sm-curt.out[ER]
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Figure 3.12: Time slice from a 3-D survey. This is a slice through a cube made up of shots
from one of two sources, and receivers from three streamers. Each panel corresponds to one
streamer.sm-curt.in.ts[ER]
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Figure 3.13: Recreated time slice from a 3-D survey. Every second shot from the data shown
in Figure 3.12 was removed and then reinterpolated. This time slice is from the interpolated
cube, at the same time sample as above.sm-curt.out.ts[ER]
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In the 3-D field data example above, there are only three streamers, with a narrow aperture,

so it does not seem especially interesting to interpolate between them. Energy moving in the

crossline direction probably becomes more important when there is a larger crossline aperture,

as is the case with newer seismic acquisition boats which may tow a dozen or more cables.

Unfortunately, no data from those boats was available. Figures 3.14 and 3.15 show a shot

gather from the SEG-AEG 3-D salt model synthetic, as modeled in the case of Figure 3.14

and after interpolating streamers between the original streamers in the case of Figure 3.15.

In this case, 20 or so shot gathers were used in the test. The interpolated data in this case

was not modeled, so there are no difference panels, but by inspection the interpolated data

seems reasonable. The front face of the two figures do not show exactly the same inline.

Instead, Figure 3.14 shows a particular streamer, and Figure 3.15 shows a streamer that was

interpolated next to it.
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Figure 3.14: Closeup on a marine 3-D shot gather. Input to the crossline interpolation.
sm-m33in [ER]
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Figure 3.15: Closeup on a marine 3-D shot gather. Output of the crossline interpolation.
sm-m33out[ER]
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SMOOTHING AND DAMPING, ACCURACY AND CONVERGENCE

Estimating a set of adaptive PEFs tends to create an underdetermined problem, at least in those

regions of the data (if any) where the filters are placed close together. The filter calculation

then requires some damping equations or some method of controlling the null space in order

to get satisfactory results. Several prescriptions exist. In one dimension, Claerbout (1997)

preconditions the filter estimation with a smoother, and limits the number of iterations to

control the null space. Shoepp and Margrave (1998) use an estimate of attenuation of the input

trace to characterize the time-varying behavior of the input data. In two and three dimensions,

Brown (1999) regularizes the filters with a Laplacian. Clapp (1999) preconditions with a

smoother and also damps the preconditioned (roughened) model variable.

In this section we compare some strategies for controlling the null space of the underde-

termined filter calculation problem. Convergence of the filter calculation by itself is not very

informative. Filter calculation is the first step in a sequence of two linear optimization steps,

and solving either step by any of several methods will guarantee convergence. There is no

guarantee of convergence for the real quantity of interest, which is the difference between the

true data (unknown in principle, but known for test cases) and the output of the second step, the

interpolated data. Here we track that difference, as well as the residuals of the two individual

least squares steps, varying the filter calculation strategy.

Tests of convergence and accuracy

A cube of seismic data with an interesting set of dips was used as a test case. Half the traces

were replaced by zeroes and input to four variations on the adaptive interpolation scheme of

this chapter.

These tests use filters estimated in radial micropatches. The density of filters was chosen to

give a good interpolation result, and to give patches that create an overdetermined problem at

longer offsets and later times where the patches are largest, and an underdetermined problem

where the patches are smaller.
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Figure 3.16 shows the rms amplitude of the data-fitting residuals for the filter calcula-

tion step versus iteration number. The four curves correspond to four variations on the filter

calculation scheme. The curve labels are:

Smoothedmeans that the filters were calculated using the preconditioned optimization of

equation (3.5), but thatε was zero, and so the damping (equation (3.6)) was effectively

turned off.

Both is similar but withε 6= 0.

Damped used equations (3.1) and (3.6), except the damping equation really reads0 ≈ Ia,

because there is no preconditioning, and so no change of model variables.

Neither was estimated using equation (3.1) alone, which is fine so long as the problem is

overdetermined.

The curves all start off about the same, with the three curves associated with any sort

of smoothing and/or damping flattening out earlier and higher than the fourth. The residual

of the filter calculation step goes down fastest when there is no restriction on the filters (the

Neithercurve). This is not surprising. Unfortunately, a small filter estimation residual is not

necessarily good. In this case, it just means the filters have too many degrees of freedom.

The rms amplitude of the residual for the missing data calculation step is shown in Figure

3.17. A pleasing thing about all of these curves is that they converge after a handful of itera-

tions. The empty spaces in the data are small, so they do not take long to fill in. Of course,

some of the curves do not converge to very good answers; that depends on the PEFs calculated

in the first stage.

Figure 3.18 shows the real quantity of interest. Each curve is the norm of the difference

between the interpolated data and the true data as a function of iteration in the second step

of the interpolation. The difference increases at some point in most cases. In principle the

true data are unknown, and there is no reason for the difference not to increase. Significantly,

the misfit starts to go up about the time that the residual from Figure 3.17 bottoms out. The

missing data residual bottoms out after about 6 iterations, and is guaranteed not to increase.
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Figure 3.16: Filter calculation resid-
ual as a function of iteration. Curves
represent different filter calculation
schemes.sm-curves.nrp[CR]

Figure 3.17: Missing data residual
as a function of iteration. Curves
represent different filter calculation
schemes.sm-curves.nrd[CR]
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The difference between the interpolated and true data begins to climb after the missing data

problem has converged. Luckily, it does not climb very far.

The algorithm producing the curves labeledSmoothedand that producing the curves la-

beledBoth are closely related. The former is just a special case of the latter, withε = 0.

With ε = 0, there is no damping to control the null space of the filter calculation step; control

comes from not running too many iterations. Figure 3.19 shows how, with smoothing but no

damping, the number of iterations spent calculating filters affects the misfit between the final

interpolation result and the true data. The vertical axis is the sum of squares in the difference.

The horizontal axis is the number of iterations spent filling in missing data. The five curves

correspond to different numbers of iterations spent calculating filters. For example, the curve

labeledniter=30 shows the rms amplitude of the difference between interpolated and true data

as a function of missing-data iteration, for the set of PEFs calculated after 30 filter-calculation

iterations. As in Figure 3.18, after a sufficient number of missing data iterations, the difference

between interpolated and true data begins to increase. Figure 3.19 shows that the size of the

misfit also goes up if too many iterations are spent on the filter calculation. After spending 80

iterations calculating PEFs, the smallest possible result is larger than if only 30 iterations were

spent on the PEFs.

Figures 3.19, 3.20, and 3.21 point to the utility of damping. Figure 3.20 shows the same

curves as are shown in Figure 3.19, except that a small amount of damping is applied, with

ε = 2. That value was chosen by trial and error. Figure 3.21 is also thematically similar to

Figure 3.19, except that the number of filter calculation iterations is held constant (at 30) and

the value ofε is incremented.

Figure 3.20 shows that choosing a reasonable value ofε helps to reduce the sensitivity

of the final result to the number of iterations in the filter calculation step. Figure 3.19 shows

that increasing the number of iterations from 30 to 80 with no damping causes a noticeable

increase in the misfit, While Figure 3.20 shows that the same change in number of iterations

with damping has a smaller effect.

Figure 3.21 shows that while there is a choice between choosing the number of iterations
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and choosingε, there appears to be an advantage to choosingε. Changing the number of iter-

ations by a factor of about two (again, from 30 to 80), with no damping, showed a significant

effect in Figure 3.19. Changing the value ofε by a larger factor , while keeping iterations

constant, produces a very small effect in Figure 3.21.

Figure 3.18: Norm of the misfit be-
tween the true data and the interpo-
lated data. Horizontal axis displays
number of iterations in the miss-
ing data calculation step. Curves
represent different filter calculation
schemes.sm-curves.nm[CR]

Figure 3.19: Norm of the misfit be-
tween the true data and the interpo-
lated data. Horizontal axis displays
number of iterations in the miss-
ing data calculation step. Curves
represent different numbers of iter-
ations in the filter calculation step.
sm-curves.nm.filtniter[CR]
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Figure 3.20: Norm of the misfit be-
tween true data and interpolated data.
Curves represent different numbers of
iterations in the filter calculation step.
sm-curves.nm.slightdamp.fn[CR]

Figure 3.21: Norm of the misfit be-
tween true data and interpolated data.
Curves represent different amounts of
damping. sm-curves.nm.muchdamp
[CR]



Chapter 4

Noisy data and land data

In previous chapters, all of the interpolation examples were run on marine data. Interpolating

marine data is a good application because of the trouble with aliased multiples. Marine data

is also relatively easy to interpolate, because it typically has little noise and regular geometry.

Land data is much more difficult. Land data often has discontinuous arrangements of shots

and receivers, where the survey is forced to work around and over surface features. Land data

also tends to be noisier. Noise and statics make it difficult to predict a seismic trace from its

neighbors, so it is more difficult to interpolate. Nonetheless, because of the expense and effort

of acquiring land data, it is worthwhile to try interpolating it.

Statics and irregular geophone placement can significantly reduce the window size that

can be realistically assumed to be stationary. That makes it attractive to use tiny micropatches

rather than patches large enough to calculate a PEF independently. However, it also suggests

that PEFs should not be gradually varying, because the dips of events might change very

quickly where there are statics.

In this chapter, I apply the method of the previous chapter to interpolate noisy marine data

and land data with noise and irregular geometry. The problems are more difficult than earlier

examples, but the results are still encouraging.
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NOISY DATA

On data with complicated dips, nonstationary filters work better than stationary filters. Noise

is a problem related to the problem of complicated dips. Regone (1998) points out that in

many cases, noise which appears to be random is completely repeatable, though incoherent.

Energy may be scattered by near surface features back to receivers at many different angles

and amplitudes simultaneously. This superposition of waves at all angles may produce what

looks like random noise, but as long as the shot and receiver positions do not change, the same

scattered energy will be produced by successive shots, and the apparently random noise will

be recreated.

That may mean that apparently random noise should be interpolated, because it is just

many superimposed plane waves. On the other hand, maybe genuinely random noise will be

interpolated if we allow our filters too much freedom by making them large, since the number

of plane waves predicted by a PEF depends on its size. In the end the important thing is to

interpolate all of the coherent events that exist in the data, and to not create any new coherent

events from random noise.

We do not attempt any distinction between signal and coherent noise. Coherent noise

should be interpolated. In the case of multiples, this is often exactly the point of the interpola-

tion. Interpolating the multiples dealiases them and makes them easier to suppress.

Noisy data examples: confirmation of Abma’s result

Abma (1995) shows that (t ,x) PEFs are less likely to create spurious events in the presence

of noise than (f ,x) PEFs, because calculating a filter at each frequency is the time domain

equivalent of calculating a filter that is long on the time axis. This effective time length of the

( f ,x) filter gives it sufficient freedom to predict ostensibly random noise.

As an example, the data used in Figures 3.7 through 3.9 is used again, except noise is

added, and the PEFs used for interpolation are only two dimensional. The other examples in

this thesis have three or more dimensions, but the (f ,x) interpolation that I happened to have

available for comparison uses two dimensions in the input, so for this test the interpolation is
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2-D in both domains. My experience has been that (t ,x, y) interpolation nearly always gives

better results than just (t ,x); presumably the same is true for (f ,x, y) and (f ,x). So in both

domains the results could be better, but they should still make a meaningful comparison.

The data as it was recorded has little noise. On noise-free data, time- and frequency-

domain implementations both produce fine results. Figure 4.1 shows closeups on results of

interpolating noise-free data using (t ,x) interpolation on the left, and (f ,x) on the right. The

data were subsampled on the x-axis simulating receiver gathers with alternate shots missing,

and then reinterpolated. The time-domain interpolation uses the PEF smoothing scheme de-

scribed in chapter 3. The panels in Figure 4.1 are not identical, but either is a good result.

Figure 4.1: Time-domain and frequency-domain interpolation results using noise-free input.
The panels are not identical, but either is a good result.lnd-102.smooth.both.out.closeup
[NR]

With increasing amounts of noise, the difference between time-domain and frequency-

domain interpolation becomes significant. Random noise was added to the same data and

interpolated again, to produce the results in Figure 4.2. Again, time domain is on the left,

frequency on the right. Where either domain did a satisfactory job on the noise-free data, the
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time domain produced a significantly better result on the noisy data. Many of the strong events

are better interpolated in the time domain. Also, as a confirmation of Abma’s observation, in

the time domain there is almost no interpolation where there are no coherent seismic events,

such as above the seafloor reflection where the only energy is the added noise. Where there is

nothing but white noise to interpolate, nothing happens, because PEFs are just whiteners. In

the frequency domain, the noise is interpolated. The same amount and distribution of noise

is added in both cases, but the frequency-domain result looks noisier because more noise is

interpolated into the new traces.

Figure 4.2: Time-domain and frequency-domain interpolation results using noisy input. Sev-
eral of the strong events are interpolated better in the time-domain. In the region above the
first breaks, where there is only noise, the time-domain puts less energy in the interpolated
traces. lnd-102.sn.both.cp[NR]

The differences between the two results are easier to see in Figure 4.3. The top half of this

figure shows the same two panels as Figure 4.2, with the known half of the traces removed.

The top left shows just the energy interpolated into the missing traces in the time domain. The

top right shows just the energy interpolated into the missing traces in the frequency domain.

The time domain method adds much less energy above the first breaks, where there is nothing
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to interpolate, though both methods add a slight artifact above the first breaks and parallel

to them. More importantly, the time domain method does a better job at interpolating dips

pointed both out towards increasing offset and in towards zero offset. For example, the event

with its apex at about channel 70, at time 3.0 s, is better interpolated in the time domain. The

near offsets and the steep events around the first breaks also look better in the time domain

result.

The bottom half of Figure 4.3 shows difference panels between the interpolation result

and the original traces which were thrown out. The left is time domain, the right is frequency.

Again, the known half of the traces are not shown, since they naturally have a difference of

zero. Both differences have noticeable energy, but the time domain difference is mostly inco-

herent. The frequency domain difference shows some definite coherent events. In particular

the near offset events, the first break events, and the mid-offset event at 3.0 s all show up in

the frequency domain difference panel.
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Figure 4.3: Interpolated traces and difference panels. The top left panel shows just the energy
interpolated into the missing traces in the time domain. The top right shows just the energy
interpolated into the missing traces in the frequency domain. The bottom panels show the
differences between the interpolated traces in the top panels and the real traces. The time
domain shows less noise energy interpolated above the first breaks, and less coherent event
energy in the differences.lnd-102.sn.all.cpd[NR]
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LAND DATA

If you can interpolate noisy data, then it is natural to think about interpolating land data.

Land data can be difficult and time-consuming to acquire, depending on the survey area, so

naturally it is attractive to acquire less of it in the field. Unfortunately, land data is also much

harder to interpolate, for a number of reasons. First, land geometries tend not to be well-

behaved in the way that marine geometries are. Marine cables are all the same length, and are

dragged through the water while recording, so that there is a restoring force working against

sharp bends in the receiver lines, smoothing them out. Land geophones are static; they do not

have anything smoothing out the kinks in the receiver lines. Sharp bends are common, as are

receiver lines of different lengths, and large static shifts. Taken together, these things mean

that land data does not have the same kind of lateral coherence and predictable acquisition that

makes marine data ideal for interpolation. Nonetheless, because of the expense and effort of

acquiring land data, it is worthwhile to try interpolating it.

Arabian data examples

The first land data examples are from a data set from Saudi Arabia, which has a mostly regular

geometry, and is very clean for land data. The first is made up of all the positive offsets from a

set of CMP gathers, shown in Figure 4.4. This data is divisible by inspection into two wedge-

shaped regions. The nearer offset wedge is the noisier of the two; it contains the surface waves.

The farther offset wedge is outside the cone of surface waves, and appears very clean. In the

coherent wedge towards farther offsets, events are predictable both in offset and in midpoint.

In the near offset wedge, events are predictable only over much shorter distances in offset,

and are unpredictable in midpoint. Figure 4.5 shows portions of the original and interpolated

data cubes. The data in Figure 4.5 is subsampled so that only missing traces are shown. The

left panel shows some of the traces which were removed from the original data to make the

input cube. The center panel shows those same traces taken from the interpolation result,

and the right panel shows the difference. There are large differences, though they are mostly

incoherent, and mostly restricted to the noisy inner offsets. Most of the somewhat coherent

noise events visible in the original data are interpolated, though not fully. For instance, there
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are a number of nearly horizontal events near the bottom of the input traces, in the inner half of

the offsets, each about five traces wide in offset, and one trace wide in midpoint. These events

are visible in the output, but their amplitudes are lower than in the input. Over the whole input,

about 72% of the variance is predicted.

The next figures zoom in on the near offset, short time portion of the data, where there is

the strongest curvature. Figures 4.6 and 4.7 show input and output cubes where the data are

just the near offsets and short times of some CMP gathers. In this case offsets are interpolated

instead of shots; the data are CMP gathers, and the shot and receiver spacings are equal, so the

fold is equal to half the number of receivers. Here we just double the fold. We do not begin

by subsampling the known data, so there are not any obvious input/output comparisons. It is

just presented as an exercise in interpolating strongly curved, somewhat aliased events. At any

rate, the result is convincing, if subjective.
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Figure 4.4: Land CMP gathers. Shot gathers were removed from the cube and interpolated
back to produce Figure 4.5.lnd-sgyWin2.in [NR]
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Figure 4.5: Interpolated traces. The left panel shows half of the traces which were removed
from the original data (Figure 4.4) to make the input cube. The center panel shows those
same traces taken from the interpolation result, and the right panel shows the difference.
lnd-sgyWin2.out[NR]
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Figure 4.6: Land CMP gathers. This cube was interpolated on the offset axis to produce Figure
4.7. Events curve through a wide range of dips over just a few traces, and are somewhat aliased
on the flanks.lnd-sgyWin1.in [NR]
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Figure 4.7: Land CMP gathers. This is the result of interpolating the data in Figure 4.6. The
data have strong curvature over just a few traces, but are interpolated well.lnd-sgyWin1.out
[NR]
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Arizona data example

The last example uses an environmental data set acquired near a copper mine in Arizona.

The data was acquired on rough terrain. There are large statics throughout the data, and the

geometry is much less predictable than in a marine case, or in the Saudi data.

In this data set, receivers were zeroed in a checkerboard pattern and reinterpolated, similar

to several earlier experiments on marine data. This survey used a roll switch to increment the

active receiver range with each shot, so the geometry is similar to a marine survey in the sense

that the offset range is the same on each shot gather. This subsampling can thus simulate half

as many receiver locations or half as many shots with the input taken to be receiver gathers

rather than shot gathers. Unlike the marine case, the ground surface where this data was

recorded is rough, so that the geometry does not have the regularity of earlier examples. The

rough surface and the relatively unpredictable geometry give rise to statics and scattered noise

in the data, which make it difficult to predict. As a result, the interpolation is not perfect, with

75% of the variance predicted. Nevertheless, it is good, given the input.

Figure 4.8 shows a shot gather from the original input data. Figure 4.9 shows the same

view of the output, after subsampling and interpolating. The most obvious difference is at the

very closest offsets. Here events dip so steeply that they are beyond the angular range of the

PEFs used to interpolate, so nothing is filled in. A more subtle difference is the static shifts

between original traces and their interpolated counterparts. Interpolated traces may have the

correct waveform, but not the correct static shift relative to surrounding traces. Figure 4.9 is a

two-frame movie in the electronic version of this document. Flipping between the two frames

you can see that several channels have statics in the original data which are not present in the

interpolated trace. The possibility of introducing non-surface-consistent statics in this way is

an interesting, unexplored topic.
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Figure 4.8: Land shot gather. This is one of the input shots that was subsampled and interpo-
lated to make Figure 4.9. This data is noisy and has statics, making it difficult to interpolate.
lnd-minetestin[NR]
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Figure 4.9: Land shot gather. This is the result of subsampling and interpolating the data in
Figure 4.8. In the electronic version of this thesis, this figure is a two-frame movie comparing
the original data and the interpolation result.lnd-minetestout[NR]
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Chapter 5

Summary

In this thesis, I present a method of interpolating aliased seismic data using time- and space-

domain prediction-error filters (PEFs). The method works in two steps. First, PEFs are cal-

culated from the aliased input data. The spectrum of a PEF is the inverse of the input data

spectrum. If the data are aliased, then the PEF also has an aliased spectrum. The aliased data

spectrum contained in a PEF can be “unwrapped” easily by scaling and rescaling the PEF’s

axes. This dealiases the PEF spectrum. The second step is then to calculate new data, using

the PEFs and the existing data. Where in the first step the PEF takes on the inverse of the

aliased data spectrum, now the data takes on the inverse of the dealiased PEF spectrum. The

result is a dealiased data set.

The theory for PEFs assumes that the data are wide-sense stationary. Seismic data are not

stationary. The dips of events change in time and space. How to deal with nonstationarity is

one of the most important details in interpolation. This thesis describes two strategies. The

first strategy, well known in various filtering applications, is called patching. The input data

are simply divided into patches (also known as analysis windows, design gates, etc.), and

assumed to be stationary within the patch. Each patch gets a single PEF, and is interpolated

as an independent problem. At the end, the patches are reassembled to form the interpolated

data volume, with some overlap and normalization to hide the patch boundaries.

The second (and new) approach treats the data as a set of gradually varying dips rather than
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as independent dips. Seismic events are curvy in prestack data, and so have gradually changing

dips. Instead of dividing the data into patches, we treat the data as a single nonstationary

unit. We estimate many PEFs, as many as one per data sample, and the filter calculation

problem becomes underdetermined. To control the null space we add a penalty function, which

says that different PEFs which are calculated from adjacent portions of the data should be

approximately equal. More specifically, we add directionality so that PEFs are approximately

equal along radial lines extending from zero time and offset in CMP gathers.

On data with complicated dips, nonstationary filters work noticeably better than filters cal-

culated in patches. Nonstationary filters also work noticeably better on data with noise and

statics. Land data is an interesting interpolation problem because it so expensive to acquire.

It can be much more difficult than marine data, because of the differences in acquisition ge-

ometry, and the relatively large amount of noise that tends to be in the data. Nonetheless, the

interpolation results are promising.
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