next up previous print clean
Next: Born/Rytov review Up: Rickett: Traveltime sensitivity kernels Previous: Conclusions: does it matter?


Arfken, G., 1985, Mathematical methods for physicists: Academic Press Inc., San Diego, 3rd edition.

Beydoun, W. B., and Tarantola, A., 1988, First Born and Rytov approximations: Modeling and inversion conditions in a canonical example: J. Acoust. Soc. Am., 83, no. 3.

Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: 69th Ann. Internat. Meeting, Soc. Expl. Geophys., 1723-1726.

Bishop, T. N., Bube, K. P., Cutler, R. T., Langan, R. T., Love, P. L., Resnick, J. R., Shuey, R. T., Spindler, D. A., and Wyld, H. W., 1985, Tomographic determination of velocity and depth in laterally varying media: Geophysics, 50, no. 06, 903-923.

Kosloff, D., Sherwood, J., Koren, Z., MacHet, E., and Falkovitz, Y., 1996, Velocity and interface depth determination by tomography of depth migrated gathers: Geophysics, 61, no. 5, 1511-1523.

Marquering, H., Dahlen, F. A., and Nolet, G., 1998, Three-dimensional waveform sensitivity kernels: Geophys. J. Int., 132, 521-534.

Marquering, H., Dahlen, F. A., and Nolet, G., 1999, Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox: Geophys. J. Int., 137, 805-815.

Morse, P. M., and Feshbach, H., 1953, Methods of theoretical physics: McGraw-Hill, New York.

Stork, C., 1992, Reflection tomography in the postmigrated domain: Geophysics, 57, no. 5, 680-692.

Woodward, M., 1989, A qualitative comparison of the first order Born and Rytov approximations: SEP-60, 203-214.

Woodward, M. J., 1992, Wave-equation tomography: Geophysics, 57, no. 1, 15-26.


Stanford Exploration Project