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Origin of Gassmann’s equations
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ABSTRACT

A short tutorial on the derivation of Gassmann’s equations is provided.

INTRODUCTION

Gassmann’s relations are receiving more attention as seismic data are increasingly used for
reservoir monitoring. Correct interpretation of underground fluid migration from seismic data
requires a quantitative understanding of the relationships among the velocity data and fluid
properties in the form of fluid substitution formulas, and these formulas are very commonly
based on Gassmann’s equations. Nevertheless, confusion persists about the basic assumptions
and the derivation of Gassmann’s (1951) well-known equation in poroelasticity relating dry
or drained bulk elastic constants to those for fluid saturated and undrained conditions. It
is frequently stated, for example, but quite incorrect to say that Gassmann assumes the shear
modulus is constant, i.e., mechanically independent of the presence of the saturating fluid. This
note clarifies the situation by presenting an unusually brief derivation of Gassmann’s relations
that emphasizes the true origin of the constant shear modulus result, while also clarifying the
role played by the shear modulus in the derivation of the better understood result for the bulk
modulus.

DERIVATION FOR ISOTROPIC POROUS MEDIA

I now present a very concise, but nevertheless complete, derivation of Gassmann’s famous
results. For the sake of simplicity, the analysis that follows is limited to isotropic systems,
but it can be generalized with little difficulty to anisotropic systems (Gassmann, 1951; Brown
and Korringa, 1975; Berryman, 1998). Gassmann’s (1951) equations relate the bulk and shear
moduli of a saturated isotropic porous, monomineralic medium to the bulk and shear moduli
of the same medium in the drained case and shows furthermore that the shear modulus must
be mechanically independent of the presence of the fluid. An important implicit assumption
is that there is no chemical interaction between porous rock and fluid that affects the moduli;
if such effects are present, we assume the medium is drained (rather than dry) but otherwise
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neglect chemical effects for this argument. Gassmann’s paper is concerned with the quasistatic
(low frequency) analysis of the elastic moduli and that is what we emphasize here also. Gen-
eralization to higher frequency effects and complications arising in wave propagation due to
frequency dispersion are well beyond the scope of what we present.

In contrast to simple elasticity with stress tensor i j and strain tensor ei j , the presence of
a saturating pore fluid in porous media introduces the possibility of an additional control field
and an additional type of strain variable. The pressure p f in the fluid is the new field parameter
that can be controlled. Allowing sufficient time (equivalent to a low frequency assumption)
for global pressure equilibration will permit us to consider p f to be a constant throughout the
percolating (connected) pore fluid, while restricting the analysis to quasistatic processes. The
change in the amount of fluid mass contained in the pores is the new type of strain variable,
measuring how much of the original fluid in the pores is squeezed out during the compression
of the pore volume while including the effects of compression or expansion of the pore fluid
itself due to changes in p f . It is most convenient to write the resulting equations in terms of
compliances si j rather than stiffnesses ci j , so for an isotropic porous medium (chosen only for
the sake of its simplicity) the basic equation to be considered takes the form:
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The constants and appearing in the matrix on the right hand side will be defined later. It
is important to write the equations this way rather than using the inverse relation in terms of
the stiffnesses, because the compliances si j appearing in (1) are simply and directly related to
the drained constants dr and dr (the parameters for the isotropic porous medium in
the drained case) in the same way they are related in normal elasticity (the matrix si j is just
the inverse of the matrix ci j ), whereas the individual stiffnesses ci j (the superscript indicates
the constants for the saturated case) obtained by inverting the equation in (1) must contain
coupling terms through the parameters and that depend on the porous medium and fluid
compliances. Using the standard relations for the isotropic moduli, I find that
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where the drained Young’s modulus Edr is defined in terms of the drained bulk modulus
Kdr and shear modulus dr by the second equality of (2) and the drained Poisson’s ratio
is determined by
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Figure 1: Vertical and horizontal applied stresses are given by 33 and 11, respectively. The
pore pressure is p f . jim2-poroelast3 [NR]

The fundamental results of interest (Gassmann’s equations) are found by considering the
saturated (and undrained) case such that

0, (5)

which — by making use of (1) — implies that the pore pressure must respond to external
applied stresses according to

p f ( 11 22 33) . (6)

Equation (6) is often called the “pore-pressure buildup” equation (Skempton, 1954). Then,
using this result to eliminate both and p f from (1), I obtain
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where si j is the desired compliance including the effects of the trapped fluid, while si j is the
compliance in the absence of the fluid. Since for elastic isotropy there are only two inde-
pendent coefficients (s11 and s12), I find that (7) reduces to one expression for the diagonal
compliance
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and another for the off-diagonal compliance
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If K and are respectively the undrained bulk and shear moduli, then (2) and (3) together
with (8) and (9) imply that

1

9K

1

3

1

9Kdr

1

3 dr

2

, (10)



190 Berryman SEP–102

and
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Subtracting (11) from (10) shows immediately that 1 2 1 2 dr or equivalently that

dr . (12)

Thus, the first result of Gassmann is that, for purely mechanical effects, the shear modulus for
the case with trapped fluid (undrained) is the same as that for the case with no fluid (drained).
Then, substituting (12) back into either (10) or (11) gives one form of the result commonly
known as Gassmann’s equation for the bulk modulus:

1
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. (13)

I want to emphasize that the analysis presented shows clearly that (12) is a definite result
of this analysis, not an assumption. In fact, we must have (12) in order for (13) to hold, and
furthermore, if (13) holds, then so must (12). Thus, monitoring any changes in shear modulus
with changes of fluid content (say through shear velocity measurements) provides a test of
both Gassmann’s assumptions (homogeneous frame, no chemical effects, & low frequencies)
and results.

To obtain one of the more common forms of Gassmann’s result for the bulk modulus, first
note that

3
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where Kg is the grain modulus of the solid constituent present and is the Biot-Willis parame-
ter (Biot and Willis, 1957). Furthermore, the parameter is related through (6) to Skempton’s
pore-pressure buildup coefficient B, so that

3
B. (15)

Substituting these results into (13) gives

K
Kdr

1 B
, (16)

which is another form (Carroll, 1980) of Gassmann’s standard result for the bulk modulus.
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