next up previous print clean
Next: About this document ... Up: Qian & Symes: Adaptive Previous: Acknowledgements


Belfi, C., and Symes, W. W., 1998, An adaptive ENO algorithm for the eikonal equation: Annual Report, The Rice Inversion Project, Rice University.

Berger, M., and LeVeque, R. J., 1997, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems: Preprint, Courant Institute.

Berger, M., and Oliger, J., 1984, Adaptive mesh refinement for hyperbolic partial differential equations: J. Comput. Phys., 53, 484-512.

Cervený, V., Molotkov, I. A., and Psencik, I., 1977, Ray method in seismology: Univerzita Karlova press.

El-Mageed, M., Kim, S., and Symes, W. W., 1997, 3-D kirchhoff migration using finite difference traveltimes and amplitudes: Annual Report, The Rice Inversion Project, Rice University.

El-Mageed, M. A., 1996, 3D first arrival traveltimes and amplitudes via eikonal and transport finite differences solvers: Ph.D. thesis, Department of Computational and Applied mathematics, Rice University, Houston, TX77251-1892.

Fomel, S., 1997, A variational formulation of the fast marching eikonal solver: SEP95, Stanford Exploration Project, Stanford University.

Friedlander, F., 1958, Sound pulses: Cambridge University Press.

Gear, C. W., 1971, Numerical initial value problems in ordinary differential equations: Englewood Cliffs, N. J.: Prentice-Hall.

Gray, S., and May, W., 1994, Kirchhoff migration using eikonal equation traveltimes: Geophysics, 59, 810-817.

Jiang, G. S., and Peng, D. P., 1997, Weighted ENO schemes for Hamilton-Jacobi equations: CAM97-29, UCLA.

Jiang, G. S., and Shu, C. W., 1996, Efficient implementation of weighted ENO schemes: J. Comput. Phys., 126, 202-228.

Lions, P. L., 1982, Generalized solutions of Hamilton-Jacobi equations: Pitman Advanced Publishing Program.

Liu, X. D., Osher, S. J., and Chan, T., 1994, Weighted essentially nonoscillatory schemes: J. Comput. Phys., 115, 200-212.

Osher, S. J., and Sethian, J., 1988, Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulations: J. Comput. Phys., 79, 12-49.

Osher, S., and Shu, C. W., 1991, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations: SIAM J. Num. Anal., 28, 907-922.

Popovici, A. M., and Sethian, J., 1997, Three-dimensional traveltime computation using the fast marching method: 67th SEG Annual Internat.Mtg. Expanded Abstracts, 1778-1781.

Qian, J. L., and Symes, W. W., 1998, Paraxial eikonal equations and upwind finite difference schemes for traveltime and amplitude in inhomogeneous anisotropic media: Mathematical formulations: Annual Report, The Rice Inversion Project, Rice University.

Qin, F., Luo, Y., Olsen, K. B., Cai, W., and Schuster, G. T., 1992, Finite difference solution of the eikonal equation along expanding wavefronts: Geophysics, 57, 478-487.

Reshef, M., and Kosloff, D., 1986, Migration of common shot gathers: Geophysics, 51, 324-331.

Schneider, W. A. J., Ranzinger, K., Balch, A., and Kruse, C., 1992, A dynamic programming approach to first arrival traveltime computation in media with arbitrarily distributed velocities: Geophysics, 57, 39-50.

Schneider, W. A. J., 1995, Robust and efficient upwind finite-difference traveltime calculations in three dimensions: Geophysics, 60, 1108-1117.

Shu, C., 1997, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws: ICASE No.97-65, NASA Langley Research Center.

Symes, W. W., 1995, Mathematics of reflection seismology: Annual Report, The Rice Inversion Project, Rice University.

van Trier, J., and Symes, W. W., 1991, Upwind finite-difference calculation of traveltimes: Geophysics, 56, 812-821.

Vidale, J. E., and Houston, H., 1990, Rapid calculation of seismic amplitudes: Geophysics, 55, 1504-1507.

Vidale, J., 1988, Finite-difference calculation of travel times: Bull.,Seis. Soc. Am., 78, 2062-2076.

Zhang, L., 1993, Imaging by the wavefront propagation method: Ph.D. thesis, Stanford University, Stanford, CA94305.

Stanford Exploration Project