next up previous print clean
Next: DISCUSSION Up: Muir: Backus revisited Previous: INTRODUCTION

DEVELOPMENT

In the normal incidence case of Backus averaging, the layer properties of thickness, $\Delta Z_{\jmath}$, compliance, $S_{\jmath}$, and mass density, $R_{\jmath}$, are replaced by the corresponding properties of the equivalent homogeneous medium, $Z_{\rm equiv}$, $S_{\rm equiv}$,and $R_{\rm equiv}$:

\begin{eqnarray}
Z_{\rm equiv} & = & \textstyle \sum\Delta Z_{\jmath} \\  S_{\rm...
 ...\sum R_{\jmath} \Delta Z_{\jmath}/\textstyle \sum\Delta
Z_{\jmath}\end{eqnarray} (1)
(2)
(3)

that is, the thickness of $Z_{\rm equiv}$ is the sum thickness of the layers, $Z = \textstyle \sum\Delta Z_{\jmath}$, and the equivalent medium mechanical properties are the thickness-weighted averages of those of the layered medium.

However, these layers can also be described in terms of the layer properties of one-way travel-time, $\Delta T_{\jmath}$, and impedance, $I_{\jmath}$, with slowness, $L_{\jmath}$ acting as the means for changing the independent variable between depth and time. It is well known that:

\begin{eqnarray}
I_{\jmath} & = & \sqrt{R_{\jmath}/S_{\jmath}} \\  L & = & \sqrt{R_{\jmath} S_{\jmath}}\end{eqnarray} (4)
(5)

and from these:

\begin{eqnarray}
R_{\jmath} & = & I_{\jmath} L_{\jmath} \\  S_{\jmath} & = & I^{-1}_{\jmath} L_{\jmath}\end{eqnarray} (6)
(7)

and thus:

\begin{eqnarray}
I_{\rm equiv} & = & \sqrt{R_{\rm equiv}/S_{\rm equiv}} \nonumbe...
 ...ath}/\textstyle \sum
I^{-1}_{\jmath} L_{\jmath} \Delta Z_{\jmath}}\end{eqnarray}
(8)

but $L_{\jmath} \Delta Z_{\jmath} = \Delta T_{\jmath}$, so:

\begin{displaymath}
I_{\rm equiv} = \sqrt{\textstyle \sum I_{\jmath} \Delta T_{\jmath}/\textstyle \sum
I^{-1}_{\jmath} \Delta T_{\jmath}}\end{displaymath} (9)

and by similar reasoning the slowness equivalent:

\begin{displaymath}
L_{\rm equiv} = (\textstyle \sum\Delta Z_{\jmath})^{-1}\sqrt...
 ...ta T_{\jmath}\textstyle \sum I^{-1}_{\jmath} \Delta T_{\jmath}}\end{displaymath} (10)

and, since $T_{\rm equiv}$ = $Z_{\rm equiv}L_{\rm equiv}$:

\begin{displaymath}
T_{\rm equiv} = \sqrt{\textstyle \sum I_{\jmath} \Delta T_{\jmath}\textstyle \sum
I^{-1}_{\jmath} \Delta T_{\jmath}}\end{displaymath} (11)


next up previous print clean
Next: DISCUSSION Up: Muir: Backus revisited Previous: INTRODUCTION
Stanford Exploration Project
4/20/1999