next up previous print clean
Next: Adjoint operator: Back-projection Up: Appendix B: First-order Born Previous: Appendix B: First-order Born

Forward operator: Perturbation migration

1.
Scattering and downward continuation

If we perturb the velocity model we introduce a perturbation in the wavefield. In other words, the perturbation in slowness generates a secondary wavefield, the scattered wavefield. We can downward continue the scattered field as we did with the background wavefield by writing  
 \begin{displaymath}

\fbox {$
\Delta u^{z+1}(\omega_{\!}) = T_0^{z}(\omega_{\!},s_0) \Delta u^{z}(\omega_{\!}) + \Delta v^{z+1}(\omega_{\!})
$}
 \end{displaymath} (20)
where

The scattered wavefield can be written as  
 \begin{displaymath}
\Delta v^{z+1}(\omega_{\!}) = T_0^{z}(\omega_{\!},s_0) G_0^{z}(\omega_{\!},s_0) u_0^{z}(\omega_{\!}) \Delta s^{z}(\omega_{\!})\end{displaymath} (21)
where

Huang et al. 1999 show that the scattering operator is
\begin{displaymath}
G_0^{z}(\omega_{\!},s_0) = i\omega_{\!} \frac{1}{\sqrt{1-\frac{\vert\vec{k}\vert^2}{\omega_{\!}^2s_0^2}}}\end{displaymath} (22)
and that it can be approximated by
\begin{displaymath}
G_0^{z}(\omega_{\!},s_0) \approx i\omega_{\!} \left(1+\frac{1}{2}\frac{\vert\vec{k}\vert^2}{\omega_{\!}^2s_0^2}\right)\end{displaymath} (23)
which represents the first-order Born approximation. In this equation, $\vec{k}$ represents the horizontal component of the wavenumber.

If we introduce Equation (B-2) into (B-1) we obtain
\begin{displaymath}
\Delta u^{z+1} = T_0^{z}
\left[ \Delta u^{z} + G_0^{z} u_0^{z} \Delta s^{z} \right] \end{displaymath} (24)
which, after rearrangements, becomes the recursion  
 \begin{displaymath}
\Delta u^{z+1} - T_0^{z} \Delta u^{z} = T_0^{z} G_0^{z} u_0^{z} \Delta s^{z}\end{displaymath} (25)

We can express the recursive relationship between the perturbation in velocity and the perturbation in the wavefield (B-6) as  
 \begin{displaymath}

\fbox {$
[\bf {I}-\bf {T_0}]\Delta \bf{U}= \bf {T_0}\bf {G_0}\widehat {\bf{U_0}}\Delta \bf{\S}$}
\end{displaymath} (26)
\begin{eqnarray}
\left[ \matrix {
{1} & 0 & 0 &...& 0 & 0 \cr
{-T_0^{1}} & {1} &...
 ...2}\cr \Delta s^{3}\cr...\cr \Delta s^{N_z} \cr
} \right]\nonumber \end{eqnarray}
where

Note the different arrangement of the background wavefield data at all depths ($\bf{U_0}$ and $\widehat {\bf{U_0}}$). [*]

Similarly to the case of the background wavefield, the relationship between the perturbation in the wavefield and the perturbation in slowness can be written for all the frequencies in the data as
\begin{displaymath}
\fbox {$
(\mathcal I-\mathcal T_0) \Delta \mathcal U= \mathcal T_0\mathcal G_0\widehat{\mathcal U_0}\Delta \mathcal \S
$}
 \end{displaymath} (27)
\begin{eqnarray}
\left( \matrix {
{\bf {I}-\bf {T_0}{(\omega_{1},s_0)}} & 0 &......
 ...bf{\S}\big\vert _{\omega_{N_{\omega_{\!}}}}\cr
}
\right)\nonumber \end{eqnarray}
where

Again, it is important to note the different arrangement of the background wavefield data at all frequencies ($\mathcal U_0$ and $\widehat{\mathcal U_0}$). [*]

Therefore, we can compute the perturbation in the wavefield ($\Delta \mathcal U$) as a function of the perturbation in slowness ($\Delta \mathcal \S$) like this:
\begin{displaymath}
\Delta \mathcal U= (\mathcal I-\mathcal T_0)^{-1} \mathcal T_0\mathcal G_0\widehat{\mathcal U_0}\Delta \mathcal \S\end{displaymath} (28)

2.
Imaging

As for the background image, the perturbation in image ($\Delta \i^{z}$), caused by the perturbation in slowness, is obtained by a summation over all the frequencies ($\omega_{\!}$):  
 \begin{displaymath}

\fbox {$
\Delta \i^{z} = \sum_1^{N_{\omega_{\!}}} \Delta u^{z}(\omega_{\!}) 
$}
 \end{displaymath} (29)

We can write Equation (B-10) in matrix form as  
 \begin{displaymath}

\fbox {$
\Delta \mathcal R= \mathcal H\Delta \mathcal U
$}
 \end{displaymath} (30)
\begin{eqnarray}
\left( \matrix{
\Delta \i^{1} \cr \Delta \i^{2} \cr ...\cr \Del...
 ... \Delta \bf{U}{(\omega_{N_{\omega_{\!}}})} \cr
} \right)\nonumber \end{eqnarray}
where

Therefore, the perturbation in image ($\Delta \mathcal R$), corresponding to the perturbation velocity field ($\Delta \mathcal \S$), can be computed as follows:  
 \begin{displaymath}

\fbox {$
\Delta \mathcal R= \mathcal H(\mathcal I-\mathcal ...
 ...al T_0\mathcal G_0\widehat{\mathcal U_0}\Delta \mathcal \S
$}
 \end{displaymath} (31)


next up previous print clean
Next: Adjoint operator: Back-projection Up: Appendix B: First-order Born Previous: Appendix B: First-order Born
Stanford Exploration Project
6/1/1999