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We model the reflectivity in a sedimentary column as a
realization of an independent, non-Gaussian, random process. The
means by which we observe the reflectivity involve time averaging
(filtering) and space averaging (diffraction). Thus, the central
limit theorem implies that our observations will be more Gaussian
than the underlying random process, Conceivably the unknown filter
(related to shot waveform) and diffraction (related to RMS velocity)
could be based on maximizing the non-Gaussian-ness of inverse
filtered and inverse diffracted (migrated) data.

The present chapter will focus on estimating an unknown
probability density function p(x) given n samples ( Xi ,i=1,n)
drawn from p(x) . We defer the task of measuring departure from
normality. However, before we go into details of estimation of
probability functions let us review some basic facts,

Entropy S 1is defined as

+
s(p) = ( p(x) n p(x) dx (1)

)
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As our first review exercise let us show the well known result that
the Gaussian probability density maximizes S provided that the
variance 02 is known. Being known means that a constraint to

the maximization of § is

+ o
o = g <2 p(x) dx (2)

-— 00
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The first requirement every probability density function must

satisfy is the unit area constraint
1 = S p(x) dx 3

Introducing two Lagrange multipliers AO and Al for the constraints

(3) and (2) we maximize (1) by maximizing

+ o .+ o + «
H =§ pznpdx+)\0(l—j p(x)dx)+)\l(02—3 xz p(x) dx) (4)

Setting to zero the variation of H with respect to P gives
+

0 = §H =S (San(x)+l—>\0—>\lx2) §P dx (5)

- 00
Since the variation of P is arbitrary the parenthesized expression
in (5) must vanish identically. Hence,

p(x) = exp (-1+ AO + Al x2 ) (6)

It remains to choose numerical values of Al and AZ to ensure
satisfaction of the constraints, however it is already clear that
(6) is a Gaussian function.

If instead of the expectation of x2 in (2) we had been given

the expectation of |xl then the probability density would turn out

to be exp (- const|xl ) .

Now suppose that instead of being given moments we are given
various quantiles. A quantile X, is defined for any 0<a<l as

follows
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a
a = P(X < Xa) = g‘ p(x) dx (7a)

If a= .5 then X, is called the median or the 50th percentile.
We shall have occasion to work with a group of n quantiles. They
will be ordered from smallest to largest and indexed by the integer
i . Rather than subscript X, with the index 1 we will write

the defining equation (7a) as

a(i,n) = P (X<x(i,n))
{,x(i,n)
= 5 p(x) dx
e
= S step [x -x(i,n) ]p(x) dx (7b)

With this notation we can easily write a set of n Lagrange constraints
for each quantile as

+
Ai { a(i,n) - g step [ x -x(i,n) Jp(x) dx} (8)

T —— 0O

i=1

Now the maximum entropy probability function turns out to be

n
p(x) = exp {AO + ¥ A,step[x-x(i,n) ]} (9)
i=1 *

This probability function is a constant function of x except at

the given percentiles x(i,n) where the function jumps. The result
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is

a(i+l,n) - a(i,n)
x(i+l,n) -x(i,n)

p(x) for =x(i+l,n) >x>x(i,n) (10)
Let us briefly consider a few other possibilities. Suppose
instead of making the entropy p inp stationary we considered making

the integral of p stationary. Such an integral is called the

information. Then the variance constraint would give

p) = ——— (11)

which is a Cauchy density and has infinite variance (so we can't

choose AZ unless the integrals terminate before infinite x ).

Again, minimizing 4&np now under the quantile constraints we get

p(x) = 1 (12)

A0-+ ZAi step [ x-x(i,n)]

which although it looks different than (9) is in fact a constant
function between the given percentiles, and hence, reduces exactly
to (10).
Now we return to our central theme, given N data points
Xi , 1=1, N find some estimated probability density function p(x) .

Later we will look for means to test p against the Gaussian.

One possible procedure for estimating P would be to estimate the

variance of the data and other higher moments. We could then determine
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the probability function which maximizes entropy. Another possible
procedure would be to take the observations Xi and reorder them
from smallest to largest. Let the reordered data points be denoted
X(i,N) . If N is odd then X[ (i+l) /2, N] 1is the sample median
and it would seem to be a good estimate of the true median. Like-
wise, X (i/4, N) would seem to be a reasonable estimate of the
25th percentile, etc,

The traditional approach seems to be moment expansions. That,
however, seems particularly hazardous because of the bursty nature
of seismic reflectivity. Furthermore, some probability functions
like the Cauchy density arise in perfectly valid applications yet
they have second and higher moments which are divergent. Thus,
we will turn to the estimation of quantiles.

Suppose we have only one data point, X. . Then we have a

1

50% probability that this data point exceeds the median x 5 of

the unknown probability function p(x) . Thus, with only one data

point our best estimate X 5 of the median x would be the given

.5

data point X Hence, even without knowledge of p(x) we may

1 -
assert that for this estimate

P (% <x ) =%— (13)

.5

Likewise, suppose that we had three independent samples X1 . X2 , and

X3 from the unknown probability function. Then these could be

reordered from smallest to largest, namely X(1,3), X(2,3), X(3,3)

and we could take the middle one as our median estimate x = X(2,3)

5
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It is still true regardless of the true p(x) and the true unknown

median X g that P (x-5 <x‘5 Y =1/2 .
Now suppose we have two data points X1 and X2 . Let us
estimate some quantiles by the formulas
x(2,2) = max (Xl ’XZ ) (12a)
x(1,2) = min (Xl ,X2 ) (12b)

What quantiles are these? The answer is that max (Xl ,X2) is a
good estimator of something like the 71St percentile of the unknown
probability function p(x) .

Rephrasing the basic idea, suppose every person in the world
had two random numbers Xl and X2 from some p(x) . Then if each
person asserts that the maximum of his two numbers is the 71St percentile
of p(x) then (about) half of the people have underestimated the
percentile and half of the people have overestimated it.

Let us now get the precise percentile. Recall equation (7a)

X

““a
a = P (X‘<Xu ) = g p(x) dx (7a)
For the maximum of two numbers to be less than Xa we must have

both of the numbers less than X, . The probability of two indepen-

dent events is the product of the individual probabilities, so

Pmax (X ,%X,) < x ] = P(X;<x ) P(X<x ) = o®  (13)



If half of the people in the world are supposed to underestimate
while the other half overestimate, then we want to set (13) equal one

half. Hence,

a = (.5)"7 = .7071 ... (14)

A similar analysis with 3 data points shows that the ordered data

points X(i,3) are good estimators of the quantiles

1/3 1/3

a(i,3) = (1-2"""",1/2,2" ) (15)

Likewise, with n points the maximum X(n,n) gives the a value

= (%)l/n = exp RL(nl*/z—) (16a)
.69
r 1 - N (16b)

Thus, for one hundred points, the minimum estimates something smaller
than the first percentile: it corresponds to an o = .0069 . You
might say that the minimum is in a bin which goes from o=0 to
a=.01.

Now let us find the quantile levels o(i,n) which correspond

to the ordered data points X(i,n) . Define the "upper tail probability"

B as
B = P(X > X, ) = 1 -nqo (17)

Consider the expression

(u+s)2= a2+a3 +Boc+62 (18)

107
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Each of the terms on the right side of (18) corresponds to a possible

result of a two number draw. The term a2 means both Xl and X

were less than xa . The term o B means X1 was less but X

2

2

was more, etc. Next consider expansion of the expression (a+8)n
where like terms such as o B8 + 8o are not combined to 2 o B as
they were not confined in (18). There will be 2" terms, one for
each possible result in an n number draw. To find the probability
that just one number was in the upper tail area and the rest were in
the lower tail area we gather all the terms with the combination
an*l B . To find the probability that one or none were in the upper

tail area we gather the two terms

an + n an—l B

For the probability that 2 or fewer were in the upper tail area we
have

n

&+ o -1 8 + n(n-1) 0Ln—2 2

2 B
The probability that i-1 or fewer are in the upper tail area

defines the so-called incomplete beta function

n
(M o (1-0)% = I (n-itl, i) (19)
. S a
s=n-i+l
We can set (19) equal one half and solve the resulting polynomial equa-

tion for o .



