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Non-Gaussian Signal Analysis

by Jon F. Claerbout

Any geophysicist who has looked at well logs, or just anyone
who has inspected sedimentary rocks in a road cut could make the
following observations about the rock properties (be they velocity,
density, porosity or subjective appearance): As a function of depth
the properties change randomly in a largely unpredictable manner.
Locally the properties may (1) fluctuate about a fixed average,

(2) fluctuate about a steady gradient gradually going from one rock
type to a somewhat different type, or (3) jump abruptly as one rock
type is overlain by an entirely different type. Furthermore, the
fluctuations themselves may be large or small at different depths
in the sedimentary column. Some examples are shown in Figure 1.

Our knowledge of the stratigraphic sequence is often via
reflection seismographs where the fluctuating earth properties are
seen as an echo time series modeled by the methods of statistical time
series analysis. Unfortunately, much of the subject of time series
analysis is only optimum in the presence of stationary Gaussian
random signals and noises. Since these presumptions are rather doubtful,
we need to consider the consequences and alternatives.

An earlier paper by Francis Muir and I (Robust Modeling with
Erratic Data, Geophysics, vol. 38, no. 5, p. 826-844, 1973) considered
the non-Gaussian character of much geophysical data. To sharpen the

distinction between non-Gaussian signals and non-Gaussian noise we
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Figure 1.
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Sample well logs from the 1974 Schlumberger Log Interpretation,

Volume II-Applications,
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consider the equation set

e, [d, ] =, 0 07 [

e, d2 X, X%, 0 f2

eq d3 Xy Xy X f3

e, = d4 - X, X3 X, (1)
eg d5 Xg X, X4

e d6 0 X X,

-e74 ‘d7- —O 0 XSJ

In our Robust Modeling paper we indicated that infinite errors
in a few of the components the data vector d could be tolerated if
the Ll norm of e (the sum of the absolute values of the error
vector components) was minimized. However, infinite errors in the x
vector cannot be handled in that way. Now we want to consider that

the x vector contains the information about the stratigraphic

record. In reflection seismology the x vector would be the deriva-

tive of the logarithm of the acoustic impedance (density times velocity)

with respect to two-way vertical travel time. The acoustic impedance
might resemble the logs shown in Figure 1. The reflectivity would be
roughly the derivative of these logs. Note that the variance of

such a curve is constantly changing and that geological unconformities
would often show up as outliers in x in equation (1). In our
earlier work with outliers in the data vector d we found that the
median is a more suitable average than the mean. Fortunately, if

random properties arise from a symmetrical probability function (such
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as the Gaussian) the median equals the mean. Hence, for a large
data sample from a Gaussian population the median has the same use
as the mean. In statistical jargon one says that under the Gaussian
assumption the median is a consistent estimator of the mean.

Let us first reduce our time series problem (1) to the simpler

projection problem

y z b4 c (2)

Now the problem is to estimate a 'best'" value for ¢ . The usual
least—~squares implicitly-Gaussian approach is to dot both sides of

(2) by the transpose of the x vector obtaining

g = X5 (3)

Now if it is supposed that x contains a few wild points then we

could consider the estimator

c = median.(yi/xi) (4)

It happens that under Gaussian assumptions ¢ is a consistent

estimator of ¢ ., Specifically, let x and y be zero-mean,

correlated Gaussian random variables. Then it is shown in Papoulis,

Probability, Random Variables, and Stochastic Processes, McGraw-Hill,

1965, pages 197-198, that y/x is a random variable with a Cauchy
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. . . , . 2
distribution centered at ()Gy,/cx which is the same as E(xy) / E(x")
Thus, we expect that for Gaussian x and y , ¢ is as good as e .
The big question is whether the median estimator ¢ offers any signi-

ficant advantages over c¢ in the non-Gaussian case. Consider the

synthetic seismogram

.000 1.000 .500 .250 .125 1.063 1.531 .766 .383 .191 .096 (5)

The average human observer quickly suspects a 1/ (1-.5Z) filter

response and quickly determines a signal excitation
0 1 0 0 0 1 1 0 0 0 0 (6)

The excitation (6) could easily be the result of a coin toss experiment,
so it could obviously be thought of as a realization of a random process.
Since only the integers 0 and 1 are observed, the probability
function is more bimodal than Gaussian.

The classical Wiener-Levinson~Robinson deconvolution of the series

(5) gives the filter 1/ (1-.7Z) and the excitation function
0 1 -.21 -.11 -.05 .97 .77 -.33 -.16 -.08 -.04

The reason this doesn't turn out to be the desired result is the large
unit lag autocorrelation of the excitation (6). Let us see how a
systematic analysis of (5) can lead to the intuitive result (6). Figure

2 shows a scattergram of the points of (5) in the ( Xe» ) plane.

41

Suppose we create a straight line for each point in the scattergram

by passing each line through the origin and the data point. Next we

(7
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Figure 2. Scattergram of the time series (5) in the

( Xis Xy ) plane. All but three points lie along a

line of slope equal one half.
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compute the slope of each line and arrange the slopes in an ascending
numerical sequence. Then we pick the middle point (median) of the
sequence which turns out to be a slope of one half, implying a filter
of 1/(1-.5Z) . A little noise obviously would not make a serious
problem.

The Levinson recursion mainly amounts to a succession of vector
orthogonalizations. This is particularly apparent when the computation
is organized in Burg form (see my book, p. 133-136 or p. 160-161, for

example). With the definition of y'

y! =y,

i P Median (yi/xi) (8)

We are doing a kind of orthogonalization. To illustrate, in Euclidean

vector space example (8) would be

=t (9)

The fact that y' 4is orthogonal to x is shown by taking the dot

product of (9) with x . With (8) the orthogonalization works a little
differently. Instead of the sum of Xiyi vanishing, it will turn out that it is
the median which vanishes. Note that the vanishing of the median of xiyi is
equivalent to saying that xiyi has as many positive terms as negative
terms. That is like saying that the number of sign agreements between

Xy and yi equals the number of sign disagreements. Equivalent

statements of the condition are that the median of y:;_/xi or xi/yi

should vanish. Thus, we would like to show that the definition of vy’

given by (8) implies any of the following three "orthogonality"

conditions



83

0 = Median (yj x,) (10a)

0 = 3 sgn(yi) sgn(xi) (10b)
i

0 = Median ( y]!. / X, ) (10¢)

The easiest to show is (10c). Imsert (8) into (10c)

o
fl

Median { [ vy o< %y Median(yi/xi) ] /xi }

o
il

Median | vy / x; - Median ( Vs / xi) ] (11)

But (11) is obviously true.

Fortunately sorting numbers into numerical order requires only
something l1ike N 4n N comparisons. This means that we need not
restrict ourselves to medians, but we can select any percentile we
choose. For example, we could look at the 40th percentile and the
60th percentile. If they straddle a correlation coefficient of zero,
then zero could be used, otherwise the smaller of the two correlation
coefficients could be selected. Another possibility is to restrict the
correlation coefficients to be zero if the estimate turns out positive.
This would result in prediction error filter coefficients which are

all positive.



